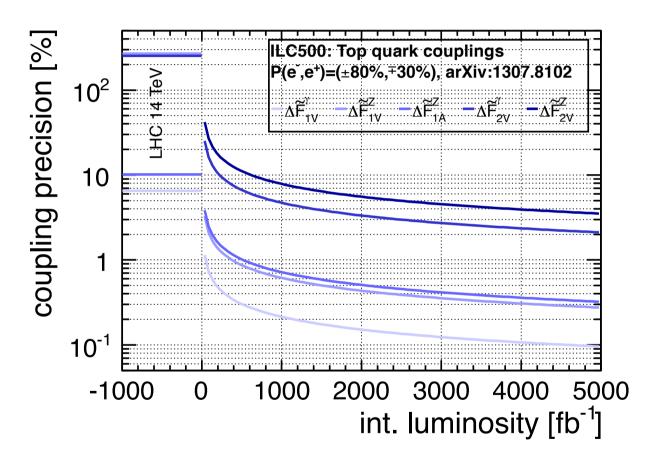
Running Scenarios & Physics Updates

J. List, June 25 2014


Outline

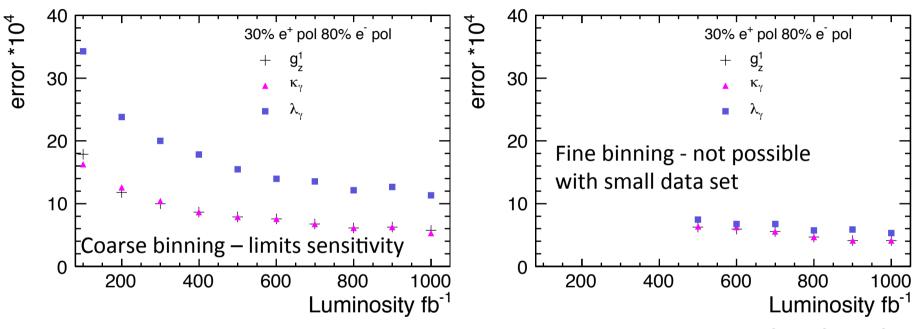
- Input from physics topics other than Higgs:
 - Top physics
 - TGCs
 - Dark Matter
- Running scenarios > 20 years

Electroweak Couplings of the Top Quark

- Key area for indirect searches for new physics (Higgs compositeness, extra-dimensions,)
- Requires ECM > ~400 GeV
- Near threshold, A_FB etc dominated by QCD (remnant of 1S, 1P etc t tbar bound state etc)
- Electron polarisation absolutely required for disentangling coupling to Z and photon
- Current studies assume
 - -250fb-1 with P(e-,e+)=(+80%,-30%) and
 - -250fb-1 with P(e-,e+)=(-80%,+30%)
- More data with right-handed electrons beneficial (eg 75% / 25% split of data set instead of 50%/50%)

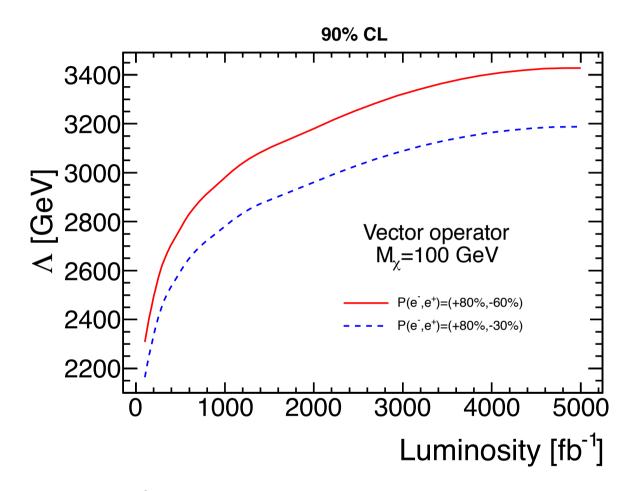
Luminosity Scaling (500 GeV)

horizontal axis to be translated to real time according to running scenarios....


Plan discussed with Roman

- For a few BSM scenarios
 - Translate coupling precision into scale of New Physics
 - O(several TeV) more easy to understand than coupling precision itself
 - Roman will discuss this with Francois Richard

should do something similar for TGCs


Charged Triple Gauge Couplings

500 GeV I.Marchesini

- Equal sharing of luminosity between +-/-+/++/- => 10..20% like-sign lumi enough?
- Estimate of sensitivity at 250 GeV, 350 GeV?

Dark Matter

- LHC 300/3000 fb-1: ~1.6 TeV
- Important example where systematics matter!

Running Scenarios

- Started to collect a table of data sets assumed in various analyses
 - -> cf separate spreadsheet
- Not yet complete, but still taking the maximum for each helicity configuration is impressive...
- After slight equalisation and application of common sense, the result seems crazy at the first glance:

Cumulative Dataset Sizes

At the end of the day:

ECM	Int. Lumi [fb-1]	Physics driver
250 GeV	2000	ZH
350 GeV	200	M_t
500 GeV	5000	ZHH / DM / TGC
1 TeV	8000	Higgs / DM / TGC
90 GeV	100	A_LR
160 GeV	500 (!)	M_W to 2 MeV

Lumi / year at full speed (ignorant particle physicist version)

ECM	Lumi / year [fb-1]		
	baseline	10 Hz Phys	LumiUp
250 GeV	125	250	500
500 GeV	250		500
1 TeV	500		1000
90 GeV	45 ???	10 Hz f. e+	3 55
160 GeV	80 ???	production	???

Years at peak lumi

(still ignorant particle physicist version)

ECM	bas	baseline 10 Hz Phys		z Phys	LumiUp	
	lumi	years	lumi	years	lumi	years
250 GeV	100	1	900	4	1000	2
350 GeV	200	1	-	-	-	-
500 GeV	1000	4	take part of lumi with 1 machine?		4000	8
1 TeV	2000	4	-	-	6000	6

- 20 years of peak lumi operation (excl. ramp-up!) before 1 TeV upgrade, 90 GeV, 160 GeV
- We can now play with different break-down into stages, and include ramp-up

Polarisation split

- "Simulataneous" collection of data with all 4 helicity configurations is essential to minimize systematic uncertainties, eg from
 - Time-dependent detector efficiencies, calibration, alignment etc
 - Luminosity, beam energy and polarisation measurements
- Thus: fast helicity reversal with frequency chosen to obtain a preset "mix" of helicity configurations (sign(P(e-)), sign (P(e+))):

ECM	-+ [%]	+- [%]	++ [%]	[%]	Phys. driver
250 GeV	67.5	22.5	5	5	ZH
350 GeV	67.5	22.5	5	5	M_t
500 GeV	40	40	10	10	ZHH / DM / TGC
1 TeV	40	40	10	10	H / DM / TGC
90 GeV	40	40	10	10	A_LR
160 GeV	67.5	22.5	5	5	M_W