Model Dependence Error in Hadronic Recoil ZH Cross Section and Why Recoil ZH Cross Section Measurements May Not Matter If We Measure σXBR(H→BSM) Well

> Tim Barklow (SLAC) July 23, 2014

Mark Thomson's analysis of $\sigma(ZH)$ with $Z \rightarrow q\overline{q}$ uses two measurements to obtain the cross section: $\sigma(ZH) = \sigma(ZH) \cdot BR(visible) + \sigma(ZH) \cdot BR(invisible)$

σ	(ZH	1)•E	BR(v	<i>isib</i>	le)	σ (ZH)•BR(invisible)				
		Fin	al(?)) Re	sults	BDT Selection				
Process	σ/fb	$\varepsilon_{\rm presel}$	$\mathcal{E}_{\mathscr{L}>0.70}$	<i>N£</i> >0.70	★ For optimal cut	 Preliminary results (7 variable BDT selection) 				
qq qq]v qqqq qq]l qq]l qqvv Hv _e v _e	25180 5914 5847 1704 325	0.5 % 6.4 % 4.2 % 1.2 % 0.6 % - %	<0.1 % 0.1 % 0.4 % 0.1 % <0.1 %	6211 3895 10818 1218 35	 signal ~9.5k events background ~ 19k events 15 % improvement c.f. LCWS analysis 	$ \begin{array}{c} \underset{M}{\overset{\text{Signal}}}{\overset{Signal}}{\overset{Signal}}\overset{Signal}}{\overset{Signal}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	Signal el Efficiency qq invis. 20.7 % Backgrounds			
HZ	93.4	44.0%	20.3 %	9493		Efficiency Ev	ann			
$H \rightarrow invis.$ $H \rightarrow q\overline{q}/gg$ $H \rightarrow WW^*$		0.6 % 43.5 % 44.7 %	<0.1 % 20.6 % 19.5 %	6211 2240	Efficiencies same to ~10 % !!!	0.4 -0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2	4 2414			
$\begin{array}{l} H \rightarrow ZZ^{*} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \\ H \rightarrow Z\gamma \\ H \rightarrow \mu^{+}\mu^{-} \end{array}$		40.0 % 47.6 % 42.8 % 41.8 % 39.5 %	18.1 % 21.4 % 22.1 % 17.6 % 20.6 %	254 738 32 17 3	almost model independent	*Assuming no invisible decays (1 sigma stat. error): $\Delta \sigma_{\rm invis} = \pm 0.57 \%$				
Mark Thomson			Fermilab	o, May 2014	- 24	(CLIC beam spectrum, 500 fb ⁻¹ @ 350 GeV, no polarisation)				

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(ZH) \cdot BR(visible)$ is "almost model independent". By how much must we blow up $\Delta\sigma(ZH) \cdot BR(visible)$ to account for the fact that the efficiencies differ by 10% or more?

* Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$\epsilon \epsilon_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\varepsilon^{\rm vis} + \varepsilon^{\rm invis}$		
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %	7	
$H \rightarrow q\overline{q}/gg$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^*$	19.5 %	<0.1 %	19.8%		
$H \rightarrow ZZ^*$	18.1 %	0.9%	19.0%		Very similar
$H\to\tau^+\tau^-$	21.4 %	0.1 %	21.5 %	Γ	efficiencies
$H \rightarrow \gamma \gamma$	22.1 %	<0.1 %	22.1 %		
$H \rightarrow Z\gamma$	17.6%	<0.1 %	17.1 %		
$H \to \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^* \rightarrow c$	<u> </u> qq <u>q</u> 19.3%	<0.1 %	19.3 %	٦	
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^* \rightarrow \mathrm{G}$	[q]ν 19.6%	<0.1 %	19.6%		Look at wide
${ m H} ightarrow { m W} { m W}^* ightarrow { m c}$	[qτν 19.9%]	<0.1 %	19.9 % 22.3 % 17.0 %		range of WW
$H \rightarrow WW^* \rightarrow 1$	vlv 22.0%	0.3 %			tange of WW
$H \rightarrow WW^* \rightarrow l$	ντν 16.7 %	0.3 %			topologies
$H \rightarrow WW^* \rightarrow \tau$	ντν 12.2 <i>%</i>	1.3 %	13.6%		
Mark Thomson		:			

I propose an approach where we use all of our $\sigma \cdot BR$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(ZH) \cdot BR(visible)$. It is then straightforward to propagate the $\sigma \cdot BR$ errors to the error on $\sigma(ZH) \cdot BR(visible)$, This means that one must take into account the correlation between the $\sigma \cdot BR$ measurements and our $\sigma(ZH)$ measurement from hadronic Z decays when we fit for couplings and total width. It also means that we must develop $\sigma \cdot BR$ analyses for all possible visible Higgs decays -- but this we have to do anyway to extract the best errors on Higgs couplings and total width.

 $\Psi \equiv \sigma(ZH) \cdot BR(visible)$

- Ω = Number of signal + background events in σ (*ZH*)•*BR*(*visible*) analysis
- B = Predicted number of background events in $\sigma(ZH)$ •BR(visible) analysis
- Ξ = Average efficiency for signal events to pass $\sigma(ZH)$ •BR(visible) analysis L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_i \xi_i = \sum_{i} \psi_i \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_i \xi_i}{\sum_{i} \psi_i}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L\eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$
$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad S_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{S_{i} + \beta_{i}}}{S_{i}}$$

 $\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}} \qquad \qquad N \equiv L \sigma_{ZH} \qquad r_{i} \equiv BR_{i} \qquad \delta_{i} \equiv \xi_{i} - \Xi$

$$(\Delta \Psi)^{2} = \left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega\Omega} + \left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi} + 2\frac{\partial \Psi}{\partial \Omega}\frac{\partial \Psi}{\partial \Xi} V_{\Omega\Xi}$$
$$\frac{\partial \Psi}{\partial \Omega} = \frac{1}{L\Xi} = \frac{\Psi}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-1} \qquad \qquad \frac{\partial \Psi}{\partial \Xi} = -\frac{\Omega - B}{L\Xi^{2}} = -\frac{\Psi}{\Xi}$$

$$V_{\Omega\Omega} = E + \sum_{i} K_{i} = \Omega$$
$$V_{\Xi\Xi} = \frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{(\xi_{i} - \Xi)^{2}}{(\eta_{i})^{2}} (\varepsilon_{i} + K_{i})$$
$$V_{\Omega\Xi} = \frac{1}{L \Psi} \sum_{i} \frac{\xi_{i} - \Xi}{\eta_{i}} K_{i}$$

$$\begin{split} \left(\frac{\Delta\Psi}{\Psi}\right)^2 &= \frac{1}{\Omega^2} \left(1 - \frac{B}{\Omega}\right)^{-2} V_{\alpha\alpha} + \frac{1}{\Xi^2} V_{zz} - \frac{2}{\Omega\Xi} \left(1 - \frac{B}{\Omega}\right)^{-1} V_{\alpha z} \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (\varepsilon_i + K_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} K_i \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (L\eta_i \psi_i + \beta_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} \lambda_i (L\eta_i \psi_i + \beta_i) \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} \left[1 + \frac{L}{\Omega} \sum_i \frac{(\xi_i - \Xi)^2}{\eta_i} \psi_i \left(1 + \frac{\beta_i}{s_i}\right) - \frac{2L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \lambda_i \left(1 + \frac{\beta_i}{s_i}\right)\right] \\ &= \frac{S + B}{S^2} \left\{1 + \frac{L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \left(\frac{s_i + \beta_i}{s_i^2}\right) \left[(\xi_i - \Xi) L\psi_i - 2\lambda_i s_i\right]\right\} \\ &= T^2 \left\{1 + \frac{N^2}{\Omega} \sum_i r_i^2 \tau_i^2 \left[\delta_i^2 - 2\lambda_i \eta_i \delta_i\right]\right\} \end{split}$$

This is our result for the error on $\sigma(ZH)$ •*BR*(*visible*) given the approach outlined on page 4

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(ZH) \cdot BR_i$ to calculate $\sigma(ZH) \cdot BR(visible) = \sum_i \sigma(ZH) \cdot BR_i$?

$$\left(\frac{\Delta \Psi'}{\Psi'}\right)^2 = \left(\sum_i \frac{\omega_i - \beta_i}{L\xi_i}\right)^{-2} \frac{1}{L^2} \sum_i \frac{s_i + \beta_i}{\xi_i^2}$$
$$= \frac{S + B}{S^2} \frac{L}{\Omega} \Xi^2 \sum_i \frac{\psi_i}{\xi_i} \left(1 + \frac{\beta_i}{s_i}\right)$$

Compare this now with our formula for $\left(\frac{\Delta\Psi}{\Psi}\right)^2$ for $\lambda_i = 1$:

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[\left(1 - \frac{\Xi}{\xi_{i}}\right)^{2} - 2\left(1 - \frac{\Xi}{\xi_{i}}\right) \right] \right\}$$
$$= \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[1 - \frac{2\Xi}{\xi_{i}} + \left(\frac{\Xi}{\xi_{i}}\right)^{2} - 2 + 2\frac{\Xi}{\xi_{i}} \right] \right\} = \left(\frac{\Delta\Psi'}{\Psi'}\right)^{2}$$

But the question posed on the last page is more than just an

exercise to check the formula for $\left(\frac{\Delta\Psi}{\Psi}\right)^2$. Why DON'T we calculate $\sigma(ZH) \cdot BR(visible)$ using $\sum_i \sigma(ZH) \cdot BR_i$ if we are confident in our measurement of $\sigma(ZH) \cdot BR(H \rightarrow visible BSM)$?

In fact this is what Michael Peskin does implicitly in his fits when he uses the constraint $\sum_{i} BR_{i} = 1$. If this constraint implicitly includes an hadronic recoil ZH cross section measurement, then the importance of the leptonic recoil ZH cross section measurement should diminish when this constraint is imposed.

I asked Michael to redo his Snowmass 2013 fits with the ILC Higgs White paper recoil cross section errors blown up by various amounts, with and without the constraint $\sum_{i} BR_{i} = 1$. Here are the results, where "sigma error" refers to the ILC Higgs White Paper $\Delta\sigma$ (ZH):

ILC 250

varying the error in e+e- -> Z h with a bound on BRinv and BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot sigma error x 1

4.666 0.7935 4.635 6.009 17.66 5.122 6.296 8.877 sigma error x 2

4.683 0.9348 4.681 6.014 17.67 5.16 6.318 8.893 sigma error x 4

4.69 0.9837 4.699 6.016 17.67 5.174 6.326 8.899 sigma error x 8

4.692 0.9972 4.704 6.016 17.67 5.178 6.328 8.9

varying the error in e+e- -> Z h with no bound on BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot

sigma error x 1

4.803 1.3 5.244 6.315 17.79 5.66 6.697 11.44 sigma error x 2

5.305 2.6 5.707 6.705 17.94 6.092 7.066 14.56 sigma error x 4

6.958 5.2 7.27 8.077 18.49 7.576 8.379 23.16 sigma error x 8

11.38 10.4 11.57 12.1 20.57 11.77 12.3 42.83

ILC 500

varying the error in $e+e- \rightarrow Z$ h with a bound on BRinv and BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot sigma error x 1

0.5337 0.5475 1.013 2.038 8.382 1.951 2.563 2.103 sigma error x 2

0.554 0.6251 1.013 2.04 8.382 1.951 2.563 2.121 sigma error x 4

0.5609 0.6503 1.013 2.041 8.382 1.951 2.563 2.128 sigma error x 8

0.5628 0.6571 1.013 2.042 8.382 1.951 2.563 2.129

varying the error in e+e- -> Z h with no bound on BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot sigma error x 1

1.136 0.9824 1.583 2.293 8.461 2.307 2.808 4.87 sigma error x 2

2.046 1.965 2.324 2.855 8.63 2.867 3.284 8.369 sigma error x 4

3.971 3.93 4.121 4.442 9.277 4.45 4.729 15.98 sigma error x 8

7.88 7.859 7.957 8.128 11.51 8.132 8.288 31.57

ILC 500up

varying the error in e+e- -> Z h with a bound on BRinv and BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot sigma error x 1

0.2412 0.2425 0.4714 0.9583 3.96 0.8895 1.196 0.9328 sigma error x 2

0.2485 0.2762 0.4722 0.9591 3.96 0.8902 1.196 0.9365 sigma error x 4

0.251 0.287 0.4725 0.9593 3.96 0.8904 1.196 0.9379 sigma error x 8

0.2517 0.29 0.4726 0.9594 3.96 0.8905 1.196 0.9382

varying the error in e+e- -> Z h with no bound on BRother

error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot sigma error x 1

0.5137 0.4386 0.7319 1.072 3.995 1.056 1.308 2.21 sigma error x 2

0.9171 0.8772 1.055 1.314 4.067 1.301 1.513 3.757 sigma error x 4

1.775 1.754 1.85 2.008 4.341 2 2.144 7.145 sigma error x 8

3.519 3.509 3.557 3.643 5.299 3.638 3.719 14.1

It is clear from these results that $\sigma(ZH) \cdot BR(visible)$ is being calculated implicitly using $\sigma(ZH) \cdot BR(visible) = \sum_{i} \sigma(ZH) \cdot BR_{i}$ when the constraint $\sum_{i} BR_{i} = 1$ is imposed, and that the importance of the leptonic recoil ZH cross section measurement is diminished in this case.

It appears that we have no need for a separate direct hadronic ZH recoil cross section measurement once we are confident that we have $\sigma(ZH) \cdot BR(H \rightarrow visible BSM)$ under control. In fact, it appears that we don't even need the classic leptonic ZH recoil cross section measurement in this case!

Caveats:

Michaels's results assume that the true $BR(H \rightarrow BSM)=0$ and that $BR(H \rightarrow visible BSM)<0.9\%$ at 95% CL can be achieved. This has yet to be demonstrated, but seems plausible given the results for $BR(H \rightarrow invisible BSM)$.

Also, we have to check how these conclusions are altered if the true $BR(H \rightarrow BSM)=1\%$, or 10%.