Model Dependence Error in Hadronic Recoil ZH Cross Section and Why Recoil ZH Cross Section Measurements May Not Matter If We Measure $\sigma X B R(H \rightarrow B S M)$ Well

Tim Barklow (SLAC) July 23, 2014

Mark Thomson's analysis of $\sigma(Z H)$ with $Z \rightarrow q \bar{q}$ uses two measurements to obtain the cross section:

 $\sigma(Z H)=\sigma(Z H) \cdot B R($ visible $)+\sigma(Z H) \cdot B R$ (invisible)$\sigma(Z H) \cdot B R($ visible $)$
Final(?) Results

Process	σ / fb	$\varepsilon_{\text {presel }}$	$\varepsilon_{\mathscr{L}>0.70}$	$N_{\mathscr{L}>0.70}$	
$q \bar{q}$	25180	0.5\%	<0.1\%	6211	- signal ~9.5k events
$q \bar{q} 1 v$	5914	6.4\%	0.1\%	3895	- background $\sim 19 \mathrm{k}$ events
q $\bar{q} q \bar{q}$	5847	4.2\%	0.4\%	10818	
q $\bar{q} 11$	1704	1.2\%	0.1\%	1218	
$q \bar{q} v \bar{v}$	325	0.6\%	<0.1\%	35	c.f. LCWS analysis
$\mathrm{Hv}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}$		- \%			
HZ	93.4	44.0\%	20.3\%	9493	
$\mathrm{H} \rightarrow$ invis.		0.6\%	<0.1\%	-	
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{gg}$		43.5\%	20.6\%	6211	Efficiencies same
$\mathrm{H} \rightarrow \mathrm{WW}^{*}$		44.7\%	19.5\%	2240	to ~10 \% !!!
$\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$		40.0\%	18.1\%	254	
$\mathrm{H} \rightarrow \tau^{+} \tau^{-}$		47.6\%	21.4\%	738	
$\mathrm{H} \rightarrow \gamma \gamma$		42.8\%	22.1\%	32	\square aimost model
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$		41.8\%	17.6\%	17	\checkmark independent
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$		39.5\%	20.6\%	3	

$\sigma(Z H) \cdot B R($ invisible) BDT Selection

ћ Assuming no invisible decays (1 sigma stat. error):

$$
\Rightarrow \Delta \sigma_{\mathrm{invis}}= \pm 0.57 \%
$$

(CLIC beam spectrum, $500 \mathrm{fb}^{-1} @ 350 \mathrm{GeV}$, no polarisation)

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that
$\sigma(Z H) \cdot B R(v i s i b l e)$ is "almost model independent". By how much must we blow up $\Delta \sigma(Z H) \cdot B R($ visible) to account for the fact that the efficiencies differ by 10% or more?

Model Indepedence

* Combining visible + invisible analysis: wanted M.I.
- i.e. efficiency independent of Higgs decay mode

Decay mode	$\varepsilon_{\mathscr{L}>0.70}^{\text {vis }}$	$\varepsilon_{\text {BDT }}^{\text {invis }}$ i ${ }_{\text {d }}$	$\varepsilon^{\text {vis }}+\varepsilon^{\text {invis }}$	
$\mathrm{H} \rightarrow$ invis.	<0.1\%	20.7 \%	20.7 \%	
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{gg}$	20.6\%	<0.1\%	20.6\%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*}$	19.5 \%	<0.1\%	19.8\%	
$\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$	18.1\%	0.9 \%	19.0\%	Very similar
$\mathrm{H} \rightarrow \tau^{+} \tau^{-}$	21.4\%	0.1 \%	21.5 \%	efficiencies
$\mathrm{H} \rightarrow \gamma \gamma$	22.1 \%	<0.1\%	22.1 \%	
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$	17.6\%	<0.1\%	17.1 \%	
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$	20.6\%	<0.1\%	20.6\%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$	19.3\%	<0.1\%	19.3 \%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{lv}$	19.6\%	<0.1\%	19.6\%	Look at wide
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \tau \nu$	19.9 \%	<0.1\%	19.9\%	range of WW
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{lvlv}$	22.0\%	0.3%	22.3 \%	topologies
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{lv} \tau \nu$	16.7 \%	0.3%	17.0\%	topologies
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \tau \nu \tau \nu$	12.2\%	1.3 \%	13.6\%	

I propose an approach where we use all of our $\sigma \cdot B R$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(Z H) \cdot B R$ (visible). It is then straightforward to propagate the $\sigma \cdot B R$ errors to the error on $\sigma(Z H) \cdot B R($ visible), This means that one must take into account the correlation between the $\sigma \cdot B R$ measurements and our $\sigma(Z H)$ measurement from hadronic Z decays when we fit for couplings and total width. It also means that we must develop $\sigma \cdot B R$ analyses for all possible visible Higgs decays -- but this we have to do anyway to extract the best errors on Higgs couplings and total width.

$$
\Psi \equiv \sigma(Z H) \cdot B R(\text { visible })
$$

$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible) analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \bullet B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \cdot B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & \mathrm{~S} \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & s_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{\mathrm{~s}_{i}+\beta_{i}}}{\mathrm{~s}_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$$
\begin{aligned}
& (\Delta \Psi)^{2}=\left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega \Omega}+\left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi \Xi}+2 \frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Xi} V_{\Omega \Xi} \\
& \frac{\partial \Psi}{\partial \Omega}=\frac{1}{L \Xi}=\frac{\Psi}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \quad \frac{\partial \Psi}{\partial \Xi}=-\frac{\Omega-\mathrm{B}}{L \Xi^{2}}=-\frac{\Psi}{\Xi} \\
& V_{\Omega \Omega}=\mathrm{E}+\sum_{i} \mathrm{~K}_{i}=\Omega \\
& V_{\Xi \Xi}=\frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right) \\
& V_{\Omega \Xi}=\frac{1}{L \Psi} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{1}{\Omega^{2}}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2} V_{\Omega \Omega}+\frac{1}{\Xi^{2}} V_{\Xi \Xi}-\frac{2}{\Omega \Xi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} V_{\Omega \Xi} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(L \eta_{i} \psi_{i}+\beta_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \lambda_{i}\left(\eta_{i} \psi_{i}+\beta_{i}\right) \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}\left[1+\frac{L}{\Omega} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\eta_{i}} \psi_{i}\left(1+\frac{\beta_{i}}{s_{i}}\right)-\frac{2 L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i} \lambda_{i}\left(1+\frac{\beta_{i}}{s_{i}}\right)\right] \\
& =\frac{S+\mathrm{B}}{\mathrm{~S}^{2}}\left\{1+\frac{L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i}\left(\frac{s_{i}+\beta_{i}}{s_{i}^{2}}\right)\left[\left(\xi_{i}-\Xi\right) L \psi_{i}-2 \lambda_{i} \mathrm{~s}_{i}\right]\right\} \\
& =\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2}\left[\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right]\right\}
\end{aligned}
$$

This is our result for the error on $\sigma(Z H) \cdot B R($ visible $)$ given the approach outlined on page 4

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(Z H) \cdot B R_{i}$ to calculate $\sigma(Z H) \cdot B R($ visible $)=\sum_{i} \sigma(Z H) \cdot B R_{i}$?

$$
\begin{aligned}
& \Psi^{\prime}=\sum_{i} \psi_{i} \quad \psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \xi_{i}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\sum_{i}\left(\frac{\partial \Psi^{\prime}}{\partial \omega_{i}}\right)^{2} \omega_{i}, \quad \frac{\partial \Psi^{\prime}}{\partial \omega_{i}}=\frac{1}{L \eta_{i}^{\prime}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\frac{1}{L^{2}} \sum_{i}=\frac{1}{L^{2}} \sum_{i} \frac{s_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& \left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}=\left(\sum_{i} \frac{\omega_{i}-\beta_{i}}{L \xi_{i}}\right)^{-2} \frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& =\frac{S+\mathrm{B}}{S^{2}} \frac{L}{\Omega} \Xi^{2} \sum_{i} \frac{\psi_{i}}{\xi_{i}}\left(1+\frac{\beta_{i}}{S_{i}}\right)
\end{aligned}
$$

Compare this now with our formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^{2}$ for $\lambda_{i}=1$:

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[\left(1-\frac{\Xi}{\xi_{i}}\right)^{2}-2\left(1-\frac{\Xi}{\xi_{i}}\right)\right]\right\} \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[1-\frac{2 \Xi}{\xi_{i}}+\left(\frac{\Xi}{\xi_{i}}\right)^{2}-2+2 \frac{\Xi}{\xi_{i}}\right]\right\}=\left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}
\end{aligned}
$$

But the question posed on the last page is more than just an exercise to check the formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^{2}$. Why DON'T we calculate $\sigma(Z H) \cdot B R($ visible $)$ using $\sum_{i} \sigma(Z H) \cdot B R_{i}$ if we are confident in our measurement of $\sigma(\mathrm{ZH}) \cdot B R(H \rightarrow$ visible $B S M)$?

In fact this is what Michael Peskin does implicitly in his fits when he uses the constraint $\sum_{i} B R_{i}=1$. If this constraint implicitly includes an hadronic recoil ZH cross section measurement, then the importance of the leptonic recoil ZH cross section measurement should diminish when this constraint is imposed.

I asked Michael to redo his Snowmass 2013 fits with the
ILC Higgs White paper recoil cross section errors blown up by various amounts, with and without the constraint $\sum_{i} B R_{i}=1$. Here are the results, where "sigma error" refers to the ILC Higgs White Paper $\Delta \sigma(\mathrm{ZH})$:
varying the error in $\mathrm{e}^{+} \mathrm{e}-\mathrm{->} \mathrm{Z}$ h with a bound on BRinv and BRother error estimates for Higgs couplings and Higgs total width

```
    W Z b g gam tau c Gtot
sigma error x 1
    4.666 0.7935 4.635 6.009 17.66 5.122 6.296 8.877
sigma error x 2
    4.683 0.9348 4.681 6.014 17.67 5.16 6.318 8.893
sigma error x 4
    4.69 0.9837 4.699 6.016 17.67 5.174 6.326 8.899
sigma error x }
    4.692 0.9972 4.704 6.016 17.67 5.178 6.328 8.9
```

 varying the error in \(\mathrm{e}+\mathrm{e}-->\mathrm{Z}\) h with no bound on BRother
 error estimates for Higgs couplings and Higgs total width
W Z b g gam tau c Gtot
sigma error x 1
4.8031 .35 .2446 .31517 .795 .666 .69711 .44
sigma error x 2
5.3052 .65 .7076 .70517 .946 .0927 .06614 .56
sigma error x 4
6.9585 .27 .278 .07718 .497 .5768 .37923 .16
sigma error x 8
$\begin{array}{lllllllllllllll}11.38 & 10.4 & 11.57 & 12.1 & 20.57 & 11.77 & 12.3 & 42.83\end{array}$
varying the error in $\mathrm{e}+\mathrm{e}-$-> Z h with a bound on BRinv and BRother
error estimates for Higgs couplings and Higgs total width

```
    W Z b g gam tau c Gtot
sigma error x 1
    0.5337 0.5475 1.013 2.038 8.382 1.951 2.563 2.103
sigma error x 2
    0.554 0.6251 1.013 2.04 8.382 1.951 2.563 2.121
sigma error x 4
    0.5609 0.6503 1.013 2.041 8.382 1.951 2.563 2.128
sigma error x 8
    0.5628 0.6571 1.013 2.042 8.382 1.951 2.563 2.129
```

 varying the error in \(\mathrm{e}+\mathrm{e}-\)-> Z h with no bound on BRother
 error estimates for Higgs couplings and Higgs total width

W Z b g gam tau c Gtot
sigma error x 1
$\begin{array}{llllllllllll}1.136 & 0.9824 & 1.583 & 2.293 & 8.461 & 2.307 & 4.87\end{array}$
sigma error x 2
2.0461 .9652 .3242 .8558 .632 .8673 .2848 .369
sigma error x 4
3.9713 .934 .1214 .4429 .2774 .454 .72915 .98
sigma error x 8
7.887 .8597 .9578 .12811 .518 .1328 .28831 .57

ILC 500up

varying the error in $\mathrm{e}+\mathrm{e}-\mathrm{->} \mathrm{Z}$ h with a bound on BRinv and BRother
error estimates for Higgs couplings and Higgs total width
W Z b g gam tau c Gtot sigma error x 1
0.24120 .24250 .47140 .95833 .960 .88951 .1960 .9328 sigma error x 2
0.24850 .27620 .47220 .95913 .960 .89021 .1960 .9365 sigma error x 4
$\begin{array}{lllllll}0.251 & 0.287 & 0.4725 & 0.9593 & 3.96 & 0.8904 & 1.196\end{array} 0.9379$ sigma error x 8
0.25170 .290 .47260 .95943 .960 .89051 .1960 .9382
varying the error in $\mathrm{e}+\mathrm{e}-->\mathrm{Z}$ h with no bound on BRother error estimates for Higgs couplings and Higgs total width
W Z b g gam tau c Gtot
sigma error x 1
$0.51370 .43860 .73191 .0723 .9951 .0561 .308 \quad 2.21$
sigma error x 2
0.91710 .87721 .0551 .3144 .0671 .3011 .5133 .757
sigma error x 4
1.7751 .7541 .852 .0084 .34122 .1447 .145
sigma error x 8
3.5193 .5093 .5573 .6435 .2993 .6383 .71914 .1

It is clear from these results that $\sigma(Z H) \cdot B R$ (visible) is being calculated implictly using $\sigma(Z H) \cdot B R($ visible $)=\sum_{i} \sigma(Z H) \cdot B R_{i}$ when the constraint $\sum_{i} B R_{i}=1$ is imposed, and that the importance of the leptonic recoil ZH cross section measurement is diminished in this case.

It appears that we have no need for a separate direct hadronic ZH recoil cross section measurement once we are confident that we have $\sigma(Z H) \cdot B R(H \rightarrow$ visible $B S M)$ under control. In fact, it appears that we don't even need the classic leptonic ZH recoil cross section measurement in this case!

Caveats:

Michaels's results assume that the true $B R(H \rightarrow B S M)=0$ and that $B R(H \rightarrow$ visible BSM $)<0.9 \%$ at 95% CL can be achieved. This has yet to be demonstrated, but seems plausible given the results for $B R(H \rightarrow$ invisible BSM).

Also, we have to check how these conclusions are altered if the true $B R(H \rightarrow B S M)=1 \%$, or 10%.

