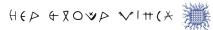
| Outline | Context<br>00 | Method<br>000000 | Results<br>O | Summary and Outlook |
|---------|---------------|------------------|--------------|---------------------|
|         |               |                  |              |                     |


# First results on the distinction of particle type in the very forward calorimeters

### S. Lukić

#### Vinča institute of nuclear sciences, University of Belgrade

Clustering WG meeting, 28 July 2014





| Outline | Context | Method | Results | Summary and Outlook |
|---------|---------|--------|---------|---------------------|
|         | 00      | 000000 | 0       | 00                  |









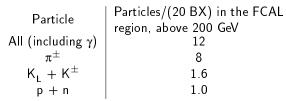
| Outline Context | Method | Results | Summary and Outlook |
|-----------------|--------|---------|---------------------|
| 00              | 000000 | 0       | 00                  |

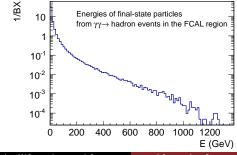
## Context



#### Luminosity measurement

- Final-state Bhabha particles ( $e^{\pm}$ ,  $\gamma$ )
- Energy cut (mostly final particles close to the beam energy)
- $\bullet\,$  Angular acceptance of the LumiCal ca.  $2^\circ$  to 4-5 $^\circ\,$
- Systematic error from hadronic background in the permille order (ILC)


#### Particle tagging in physics analyses


- Tag high-energy electrons (usually) to reject background processes
- Relevant to a variety of analyses with missing-energy signature: Higgs decays, DM or stau searches

Θ ...

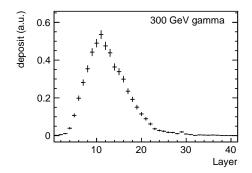


Inventory of final-state hadrons from  $\gamma\gamma \rightarrow hadrons$  at 3 TeV CLIC (Generator data T. Barklow et al., LCD-Note-2011-020)





| Outline | Context | Method | Results | Summary and Outlook |
|---------|---------|--------|---------|---------------------|
|         |         |        |         |                     |
|         |         |        |         |                     |

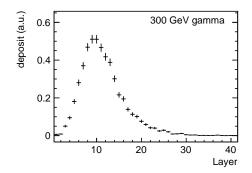

## Method to distinguish particle types

| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: dE(u + u) = hua = 1a = hx (Learne and Sastilie NUM 1

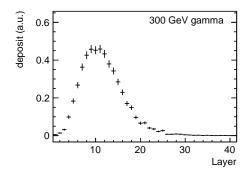
$$\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$$
 (Longo and Sestili, NIM 128, 1975)

- a and b depend on energy
- Fluctuations of the profile, notably the shower start x<sub>start</sub>




| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: dE(u + u) = hua = 1a = hx (Learne and Sastille NUM)

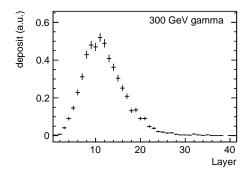

$$\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$$
 (Longo and Sestili, NIM 128, 1975)

- a and b depend on energy
- Fluctuations of the profile, notably the shower start x<sub>start</sub>



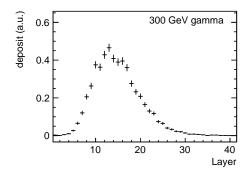
| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: dE(u + u) = hua = 1a = hx (Learne and Sastille NUM)
  - $\frac{\mathrm{d}E}{\mathrm{d}x}(x+x_{start}) = kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$ 
    - a and b depend on energy
    - Fluctuations of the profile, notably the shower start  $x_{start}$



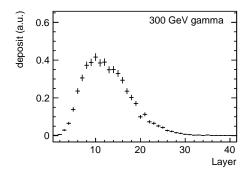

| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: dE(u + u) = hua = 1 = hx (1 and and Sastili NUM)


$$\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$$
 (Longo and Sestili, NIM 128, 1975)

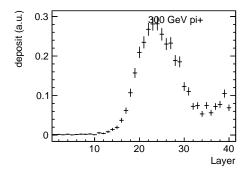
- a and b depend on energy
- Fluctuations of the profile, notably the shower start x<sub>start</sub>




| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution:  $\frac{dE}{dE}(x + x - x) = hx^{a-1}e^{-bx}$  (Lance and Settili, NIM 1
  - $\frac{\mathrm{d}E}{\mathrm{d}x}(x+x_{start}) = kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$ 
    - a and b depend on energy
    - Fluctuations of the profile, notably the shower start x<sub>start</sub>

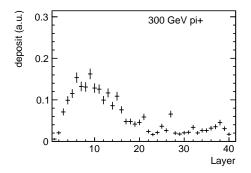



| Outline   | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
|           | 00      | 00000  |         | 00                  |
| EM shower | S       |        |         |                     |

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution:  $\frac{dE}{dE}(x + x - x) = hx^{a-1}e^{-bx}$  (Lance and Settili, NIM 1
  - $\frac{\mathrm{d}E}{\mathrm{d}x}(x+x_{start}) = kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$ 
    - a and b depend on energy
    - Fluctuations of the profile, notably the shower start x<sub>start</sub>



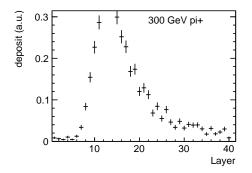
| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |


- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

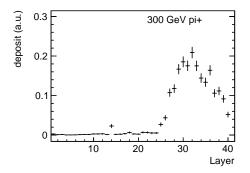
| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |


- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

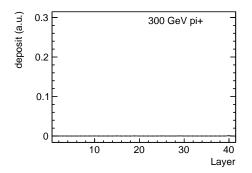
| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |


- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

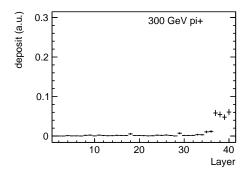
| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |


- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |


- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○●○○○○ | O       | 00                  |
| Hadronic | showers |        |         |                     |

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters



300 GeV  $\pi^+$  shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

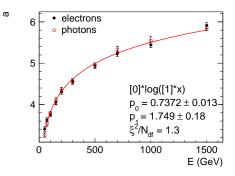
| Outline  | Context | Method | Results | Summary and Outlook |
|----------|---------|--------|---------|---------------------|
|          | 00      | ○○●○○○ | O       | 00                  |
| Strategy |         |        |         |                     |

- Start with EM vs. hadronic showers
- Compare typical longitudinal profiles
- Find a pattern (a "typical shower") for a given shower type, and perform type distinction by the maximum correlation coefficient,

$$\rho_{max}(h,f) = \frac{\sum_{i=1}^{N_h} h_i f_i(x_{start}^*)}{\sqrt{\sum_{i=1}^{N_h} h_i^2} \sqrt{\sum_{i=1}^{N_h} f_i^2}}$$
(1)

$$h_i =$$
"data" (histogram)  
 $f_i(x^*_{start}) = f(x_i - x^*_{start}) =$ "pattern" (function)

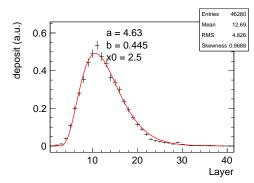
| Outline   | Context    | Method | Results | Summary and Outlook |
|-----------|------------|--------|---------|---------------------|
|           | 00         | ○○○●○○ | O       | 00                  |
| The "typi | cal" EM sh | ower   |         |                     |


- Need the average profile shape relative to the shower start, x<sub>start</sub>
- Direct averaging of profiles would result in smearing in the longitudinal direction
- Solution: central moments of the Gamma distribution
  - a and b can be expressed in terms of  $\bar{\mu}_2$  and  $\bar{\mu}_3$ :

$$a = 4 \frac{\bar{\mu}_2^3}{\bar{\mu}_3^2}, \qquad b = 2 \frac{\bar{\mu}_2}{\bar{\mu}_3}$$

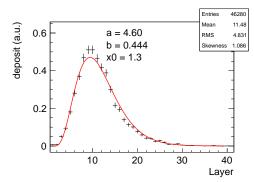
- Central moments can be averaged over the data sample  $\bar{\mu}_n(f_x) = \mu_n(\bar{f}_x)$
- Fluctuation of  $x_{start}$  removed by definition
- Energy dependence of *a* and *b* can be calibrated from data (simulation or test-beam data)




- a and b both depend on energy as, for example,  $a = p_{0,a}log(p_{1,a}E)$
- a and b determined for electrons and photons at several incident energies in the range 50 – 1500 GeV, fitted the dependence
- Consistent values of a and b for e<sup>±</sup> and γ
  → e<sup>±</sup> and γ have **the same** longitudinal profile (up to a small difference in x<sub>start</sub> distribution)

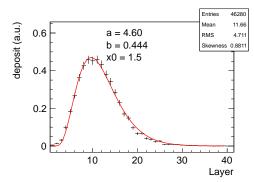


Dependence of the profile parameter a on the incident energy



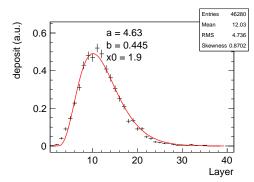

- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral





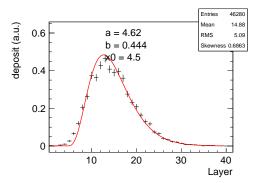

- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral





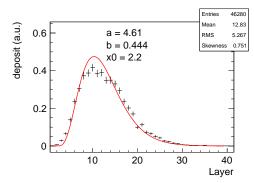

- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral






- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral



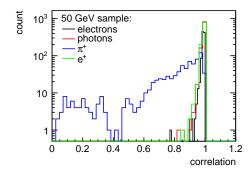



- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral





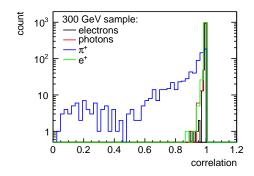
- Plot the Gamma distribution over individual profiles:
  - a and b determined from the global calibration, using the "data" energy
  - x<sub>start</sub> selected for maximum correlation
  - k (the norm) selected to give the same integral




| Outline ( | Context | Method | Results | Summary and Outlook |
|-----------|---------|--------|---------|---------------------|
| (         | 00      | 000000 | 0       | 00                  |

## Results

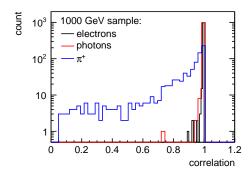



- Plot of the correlation coefficient for EM and hadronic showers
  - Coefficient very close to 1 for all EM showers
  - Wide distribution for charged pions
  - Selection can be made by an energy-independent cut on the correlation coefficient



Note: A fraction of charged pions do not induce shower in the BeamCal (15% at 50 GeV, down to 5% at 1500GeV)




- Plot of the correlation coefficient for EM and hadronic showers
  - Coefficient very close to 1 for all EM showers
  - Wide distribution for charged pions
  - Selection can be made by an energy-independent cut on the correlation coefficient



Note: A fraction of charged pions do not induce shower in the BeamCal (15% at 50 GeV, down to 5% at 1500GeV)



- Plot of the correlation coefficient for EM and hadronic showers
  - Coefficient very close to 1 for all EM showers
  - Wide distribution for charged pions
  - Selection can be made by an energy-independent cut on the correlation coefficient



Note: A fraction of charged pions do not induce shower in the BeamCal (15% at 50 GeV, down to 5% at 1500GeV)

| Outline | Context | Method | Results | Summary and Outlook |
|---------|---------|--------|---------|---------------------|
|         |         |        |         |                     |
|         |         |        |         |                     |

## Summary and Outlook

|         | Method<br>000000 | Results<br>O | Summary and Outlook<br>●○ |
|---------|------------------|--------------|---------------------------|
| Summary |                  |              |                           |

- Forward calorimeters offer good distinction of hadronic vs. the EM showers (as we supposed)
- Correlation coefficient between the EM shower pattern and the detected shower is a good variable for this purpose
  - Fast procedure
  - Small number of parameters to calibrate (5, including the energy calibration)
  - All EM showers show similar distributions of correlation, and very different to the hadronic showers
  - Position of the cut does not depend on energy

| Outlook | Outline | Context | Method | Results | Summary and Outlook |
|---------|---------|---------|--------|---------|---------------------|
| Outlook |         | 00      | 000000 | 0       | 00                  |
|         | Outlook |         |        |         |                     |

- Test kaons, neutrons and protons
- Add the presented discrimination procedure to André's implementation of clustering in BeamCal
  - Information available on the total deposited energy and the pads that belong to the analysed shower
  - Background subtraction already in there
  - The measured longitudinal profile can be built from pads that belong to the analysed shower important in presence of background
- Test in realistic conditions
  - Beam-induced backgrounds
  - Final-State Radiation merged showers from multiple EM particles
- Apply to selected physics analyses and luminosity measurement