

# Status of ILC Decks







### Perspective

- I last worked on ILC at SLAC in December 2007, doing lattice integration with Peter Tenenbaum and Andrei Seryi
- our last "official" release of ILC lattice description files was designated "ILC2007b" (<a href="http://www.slac.stanford.edu/accel/ilc/lattice/edr/ILC2007b">http://www.slac.stanford.edu/accel/ilc/lattice/edr/ILC2007b</a>), corresponding (if memory serves me) to the RDR
- since then others have carried on the lattice work (SB2009, 2012 updates, the TDR)
- some things that have changed since I last did ILC work:
  - DESY's ILC EDMS system (!)
  - offset Damping Rings in the central injector complex
  - 3.24 km circumference Damping Rings
  - Distributed Klystron Scheme (DKS) in Main Linacs
  - helical undulator for e+ production at high-energy end of e- Main Linac
  - relocation of e- MPS collimation and fast abort lines to u/s of the undulator
  - e- undulator-to-BDS dogleg line
- goals of present work:
  - collect set of most up-to-date decks which reflect the lattice described in the TDR
  - integrate deck sets for major subsystems (eSource, pSource, DRs, ELET, PLET)
  - reproduce TDR CFS geometry (EDMS Treaty Point coordinates)

### EDMS: ILC TDR Design Register



# **EDMS: Treaty Point Definitions**

# international linear collider

#### Main Linac Treaty Points

Benno List

Version 5.0 23.05.2012 EDMS ID D00000009706

This document defines the treaty points between RTML, Main Linac, Positron Source Undulator section, and BDS.

|   | Remarks                                                                                                                                                              |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Main Linac lengths are subject to change (final numbers after BTR at KEK,                                                                                            |
|   | 19./20.1.2012), current estimates based on RDR lattice                                                                                                               |
| 2 | Electron Linac final energy and length need final numbers for positron source-<br>undulator; currently, ELIN has 4 x 26 cavities more for 3.33GeV additional energy. |
| 3 | All alpha/beta functions based on RDR lattices                                                                                                                       |
| 4 | Treaty point TEML2PS between electron ML and undulator section assigns the whole                                                                                     |
| 5 | Undulator length: 66 modules with 2 undulators at 1.74m length -> 229.68m active length (see J. A. Clarke et al., Proc. EPAC08, MOPP070)                             |

| Revision History: |            |         |                                                              |  |  |
|-------------------|------------|---------|--------------------------------------------------------------|--|--|
| Version           | Date       | Author  | Remark                                                       |  |  |
| 0.9               | 25.11.2011 | B. List | First Version                                                |  |  |
| 1.0               | 15.11.2012 | B. List | Machine protection and collimation (MPSCOL) section moved to |  |  |
|                   |            |         | Main Linac                                                   |  |  |
| 2.0               | 22.02.2012 | B. List | Added final Main Linac Length                                |  |  |
| 3.0               | 29.02.2012 |         | New final Main Linac Length                                  |  |  |
| 4.0<br>5.0        | 03.05.2012 | B. List | New twiss functions at ML start, values from ∀alery Kapin    |  |  |
| 5.0               | 23.05.2012 | B. List | Split RTML to ML treaty points between KCS and DKS           |  |  |

Absolutely essential!

# international linear collider

Main Linac Treaty Points

Version 5.0 23.05.2012

| Treaty Point        | TERT          | /L2ML         | TEML2PS                                                                   | TPS2EBDS                                                        | TPRTML2ML     |               | TPML2BD9                      |
|---------------------|---------------|---------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|---------------|-------------------------------|
|                     | Electron RTML | to Main Linac | Electron Main<br>Linac to<br>Positron<br>Source<br>(Undulator<br>Section) | Positron<br>Source<br>(Undulator<br>Section) to<br>Electron BDS | Positron RTML | to Main Linac | Positron Main<br>Linac to BDS |
|                     |               |               | Geo                                                                       | metry                                                           |               |               |                               |
| <b>HLRF Scheme</b>  | KCS           | DKS           |                                                                           |                                                                 | KCS           | DKS           |                               |
| X [m]               | 104,52450     | 104,85593     | 26,540                                                                    | 17,440                                                          | 94,6204       | 94,9344       | 17,433                        |
| <i>y</i> [m]        | 0             | 0             | 0                                                                         | 0                                                               | 0             | 0             | (                             |
| Z [m]               | -14471,7801   | -14519,1269   | -3331,319                                                                 | -2253,464                                                       | 13279,10984   | 13323,95674   | 2252,514                      |
| ϑ [rad]             | -0,00700      | -0,00700      | -0,00700                                                                  | -0,00700                                                        | -3,13459      | -3,13459      | -3,13459                      |
| $\varphi$ [rad]     | 0             | 0             | 0                                                                         | 0                                                               | 0             | 0             | (                             |
| ψ [rad]             | 0             | 0             | 0                                                                         | 0                                                               | 0             | 0             | (                             |
| d [m]               | 3,220         | 3,220         |                                                                           |                                                                 | 1,665         | 1,665         | 1,665                         |
|                     |               |               | Optics F                                                                  | unctions                                                        |               |               |                               |
| α <sub>x</sub> [1]  | -1,142        |               | -2,4018                                                                   | -2,4018                                                         | -1,           | 142           | -2,4018                       |
| β <sub>x</sub> [m]  | 52,           | 67            | 51,332                                                                    | 51,332                                                          | 52            | ,67           | 51,332                        |
| η <sub>x</sub> [m]  | (             | )             | 0                                                                         | 0                                                               | (             | )             | (                             |
| η' <sub>x</sub> [1] | (             | )             | 0                                                                         | 0                                                               | (             | )             | (                             |
| α <sub>γ</sub> [1]  | 1,2           | 79            | 0,48877                                                                   | 0,4888                                                          | 1,2           | 279           | 0,4887                        |
| β <sub>y</sub> [m]  | 70,           | 74            | 9,3954                                                                    | 9,395                                                           | 70            | ,74           | 9,3954                        |
| η <sub>ν</sub> [m]  | (             | )             | 0                                                                         | 0                                                               | (             | )             | (                             |
| η' <sub>γ</sub> [1] | (             | )             | 0                                                                         | 0                                                               | (             | )             | (                             |

| Input:     | ELIN                                   |           |  |              | PLIN      |           |   |
|------------|----------------------------------------|-----------|--|--------------|-----------|-----------|---|
| Main Linac |                                        |           |  |              |           |           |   |
| Length [m] | 11140,734                              | 11188,082 |  |              | 11026,866 | 11071,714 |   |
| Reference: | ILC SCRF Cryogenics parameters for KCS |           |  | D00000000975 | 575       |           | • |
|            | ILC SCRF Cryogenics parameters for DKS |           |  | D0000000991  | 1555      |           |   |

# Deck Files Obtained and Integrated so far

| subsystems    | source      | doc / file                                       | comments                                                                                                                                       |
|---------------|-------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| EDR / PDR     | EDMS        | D*0960185,G,1,1<br>dtc04.zip                     | DTC04 lattice (3238.7 m DR circumference)                                                                                                      |
| ERTML / PRTML | EDMS        | D*0977625,B,1,1<br>RTML2012a.zip                 | KCS lattice                                                                                                                                    |
| EML / PML     | DESY<br>svn | ilclattice-ml-dks<br>_BL20120608<br>.r234.tar.gz | <ul> <li>A. Valishev / B. List DKS lattice:</li> <li>svn branch: ILC2012dks_ML_3RFU_VK201206</li> <li>svn folder: ml-dks-BL20120608</li> </ul> |
| EBDS / PBDS   | EDMS        | D*0972985,B,1,2<br>BDS2012b.zip                  | Glen and Edu are updating the BDS Final Focus and dump line lattices                                                                           |
| PSOURCE       | EDMS        | D*0977535,B,1,1<br>ps-lattice-2012a.zip          | <ul><li>W. Liu / W. Gai TDR lattice</li><li>described in IPAC2012 paper TUPPR041</li></ul>                                                     |

# Recreating the TDR CFS geometry

| subsystems                     | comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDREXT / PDREXT                | <ul> <li>created by MDW (August 2014) from:</li> <li>I. Reichel documents</li> <li>TDR text</li> <li>Treaty Point coordinate definitions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PTURN                          | small geometry changes in vertical dogleg (no matching)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ELTL / PLTL                    | converted by MDW for DKS (no matching):<br>• lengthen ELTL FODO cell: $36.016$ m to $36.141$ m ( $\Delta L = 47.348$ m)<br>• lengthen PLTL FODO cell: $35.912$ m to $36.041$ m ( $\Delta L = 44.848$ m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UPT                            | created by MDW (August 2014): • END_EUND to target drift: L= 372.044 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EBSY1 / EBSY2<br>PBSY1 / PBSY2 | <ul> <li>Redefinition errors discovered during "deck integration":</li> <li>polarimeter chicanes were copied from *BSY2 to *BSY1 as separate laserwire detection chicanes</li> <li>names of elements (bends and drifts) were not changed</li> <li>names of parameters that defined bend and drift lengths were not changed</li> <li>values of parameters that defined bend and drift lengths were changed in *BSY1 files</li> <li>when *BSY1 file is loaded, LW chicane is 45.1 m long</li> <li>when *BSY2 file is loaded, LW chicane is redefined to be 76.9 m long (ΔL = 31.8 m)</li> <li>TDR CFS coordinates include BSY LW chicanes that are each 31.8 m too long</li> <li>PBDS is 0.95 m shorter than EBDS due to rematching between PBSY and PFFS</li> <li>TDR CFS coordinates include shorter PBDS</li> </ul> |

### Damping Rings: Injection / Extraction







#### From the TDR (v3.II, section 6.9):

The kicker modules are  $50\,\Omega$  stripline structures inside the vacuum pipe, each  $30\,\mathrm{cm}$  long with a  $30\,\mathrm{mm}$  gap. The required kick angle to extract the damped low emittance ( $\sim 0.5\,\mathrm{nm}$  rad) bunch is  $\sim 0.6\,\mathrm{mrad}$  and nearly twice that for the large ( $\sim 7\times 10^{-6}\,\mathrm{mrad}$ ) injected bunch.

The septum magnets are modeled after the Argonne APS injection septa. The thin (2 mm) septum magnet has a 0.73 T field, and the thick (30 mm) septum magnet has a 1.08 T field. Each magnet has an effective length of 1 m.

# Positron Damping Ring (DTC04): Extraction



# Positron Damping Ring (DTC04): Injection



# EDR + ELET + UPT + pSource + PDR + PLET



# Close-up: Central Region



Note: e-/e+ path length difference, modulo the DR circumference, is 293.141 m (Ewan and Benno reported 293.6 m at the August 22 2014 ADI meeting ... )

#### To Do List

- gather the remaining files
  - eSource files
  - dump lines, abort lines, auxiliary source (?), ...
- deck "cleanup"
  - remove unused stuff
  - make sure names and definitions are unique
  - redefine deck "numbering" sequence
- check and fix the matching throughout
  - i.e. ELTL/PLTL
  - earth's curvature following and vertical dispersion compensation
- decide how to handle lattice modifications that effect the CFS geometry
  - EBSY/PBSY laserwire chicane lengths
  - converting e- fast abort line in EBSY to DC tuneup line (?)
  - e-/e+ path length / global timing adjustments
- aim for a controlled and fully documented release of a complete "ILC2014a" deck set