# Status of ILC Decks 

## Perspective

- I last worked on ILC at SLAC in December 2007, doing lattice integration with Peter Tenenbaum and Andrei Seryi
- our last "official" release of ILC lattice description files was designated "ILC2007b" (http://www.slac.stanford.edu/accel/ilc/lattice/edr/ILC2007b), corresponding (if memory serves me) to the RDR
- since then others have carried on the lattice work (SB2009, 2012 updates, the TDR)
- some things that have changed since I last did ILC work:
- DESY's ILC EDMS system (!)
- offset Damping Rings in the central injector complex
- 3.24 km circumference Damping Rings
- Distributed Klystron Scheme (DKS) in Main Linacs
- helical undulator for e+ production at high-energy end of e- Main Linac
- relocation of e- MPS collimation and fast abort lines to $u / s$ of the undulator
- e- undulator-to-BDS dogleg line
- goals of present work:
- collect set of most up-to-date decks which reflect the lattice described in the TDR
- integrate deck sets for major subsystems (eSource, pSource, DRs, ELET, PLET)
- reproduce TDR CFS geometry (EDMS Treaty Point coordinates)


## EDMS: ILC TDR Design Register



## EDMS: Treaty Point Definitions

## international linear collider

Main Linac Treaty Points


This document defines the treaty points between RTML, Main Linac, Positron Source Undulator section, and BDS.

Remarks
Main Linac longths are subject to change (final numbers after BTR at KEK, 49.120.1.2012), curfent estimates based on RDR tattice

2 Electron Linac final energy and length need final numbers for pesitron sourceEndulator, currently, ELIN has $4 \times 26$ cavities more for 3.33 GeV additional energy. All alphabeta function baced on PDP lattices

| 4 | Treaty point TEML2PS between electron ML and undulator section assigns the whole |
| :---: | :--- |

5 Undulator length: 66 modules with 2 undulators at 1.74 m length $\rightarrow 229.68 \mathrm{~m}$ active length (see J. A. Clarke et al., Proc. EPAC08, MOPP070)


Absolutely essential!

## international linear collider

Main Linac Treaty Points
Version
5.0
23.05.2012

| Treaty Poin | TERTML2ML |  | TEML2PS | TPS2EBDS | TPRTML2ML |  | TPML2BDS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Electron RTML | to Main Linac | Electron Main <br> Linac to <br> Positron <br> Source <br> (Undulator <br> Saction) | Positron Source (Undulator Section) to Electron BDS | Positron RTML | to Main Linac | Positron Main Linac to BDS |
| Geometry |  |  |  |  |  |  |  |
| HLRF Scheme | KCS | DKS |  |  | KCS | DKS |  |
| $X$ [m] | 104,52450 | 104,85593 | 26,540 | 17,440 | 94,6204 | 94,9344 | 17,433 |
| $y[\mathrm{~m}]$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $z[\mathrm{~m}]$ | -14471,7801 | -14519,1269 | -3331,319 | -2253,464 | 13279,10984 | 13323,95674 | 2252,514 |
| $\vartheta$ [ rad$]$ | -0,00700 | $-0,00700$ | -0,00700 | -0,00700 | -3,13459 | -3,13459 | -3,13459 |
| $\varphi$ [ rad$]$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\psi$ [ rad$]$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| d [m] | 3,220 | 3,220 | 3,220 | 1,665 | 1,665 | 1,665 | 1,665 |
| Optics Functions |  |  |  |  |  |  |  |
| $\alpha_{x}$ [1] | -1,142 |  | -2,4018 | -2,4018 | -1,1 |  | -2,4018 |
| $\beta_{x}[\mathrm{~m}]$ | 52,67 |  | 51,332 | 51,332 | 52,6 |  | 51,332 |
| $\mathrm{n}_{\mathrm{x}}$ [m] | 0 |  | 0 | 0 | 0 |  | 0 |
| $\mathrm{n}^{\prime} \times$ [1] | 0 |  | 0 | 0 | 0 |  | 0 |
| $\alpha_{\mathrm{y}}$ [1] | 1,279 |  | 0,48877 | 0,4888 | 1,27 |  | 0,48877 |
| $\beta_{y}$ [m] | 70,74 |  | 9,3954 | 9,395 | 70,7 |  | 9,3954 |
| $\mathrm{n}_{\mathrm{y}}[\mathrm{m}]$ | 0 |  | 0 | 0 | 0 |  | 0 |
| n'y [1] | 0 |  | 0 | 0 | 0 |  | 0 |



## Deck Files Obtained and Integrated so far

| subsystems | source | doc / file | comments |
| :---: | :---: | :---: | :---: |
| EDR / PDR | EDMS | $\begin{gathered} D^{*} 0960185, G, 1,1 \\ \text { dtc04.zip } \end{gathered}$ | DTC04 lattice (3238.7 m DR circumference) |
| ERTML / PRTML | EDMS | $\begin{gathered} \text { D*0977625,B,1,1 } \\ \text { RTML2012a.zip } \end{gathered}$ | KCS lattice |
| EML / PML | DESY <br> svn | $\begin{aligned} & \text { ilclattice-ml-dks } \\ & \text {-BL20120608 } \\ & \text {.r234.tar.gz } \end{aligned}$ | A. Valishev / B. List DKS lattice: <br> - svn branch: ILC2012dks_ML_3RFU_VK201206 <br> - svn folder: ml-dks-BL20120608 |
| EBDS / PBDS | EDMS | $\begin{gathered} \text { D*0972985,B,1,2 } \\ \text { BDS2012b.zip } \end{gathered}$ | Glen and Edu are updating the BDS Final Focus and dump line lattices |
| PSOURCE | EDMS | $\begin{gathered} \text { D*0977535,B,1,1 } \\ \text { ps-lattice-2012a.zip } \end{gathered}$ | W. Liu / W. Gai TDR lattice <br> - described in IPAC2012 paper TUPPR041 |

## Recreating the TDR CFS geometry

| subsystems | comments |
| :---: | :---: |
| EDREXT / PDREXT | created by MDW (August 2014) from: <br> - I. Reichel documents <br> - TDR text <br> - Treaty Point coordinate definitions |
| PTURN | small geometry changes in vertical dogleg (no matching) |
| ELTL / PLTL | converted by MDW for DKS (no matching): <br> - lengthen ELTL FODO cell: 36.016 m to $36.141 \mathrm{~m}(\Delta \mathrm{~L}=47.348 \mathrm{~m})$ <br> - lengthen PLTL FODO cell: 35.912 m to $36.041 \mathrm{~m}(\Delta \mathrm{~L}=44.848 \mathrm{~m})$ |
| UPT | created by MDW (August 2014): <br> - END_EUND to target drift: L= 372.044 m |
| EBSY1 / EBSY2 PBSY1 / PBSY2 | Redefinition errors discovered during "deck integration": <br> - polarimeter chicanes were copied from *BSY2 to *BSY1 as separate laserwire detection chicanes <br> - names of elements (bends and drifts) were not changed <br> - names of parameters that defined bend and drift lengths were not changed <br> - values of parameters that defined bend and drift lengths were changed in *BSY1 files <br> - when *BSY1 file is loaded, LW chicane is 45.1 m long <br> - when *BSY2 file is loaded, LW chicane is redefined to be 76.9 m long ( $\Delta \mathrm{L}=31.8 \mathrm{~m}$ ) <br> - TDR CFS coordinates include BSY LW chicanes that are each 31.8 m too long PBDS is 0.95 m shorter than EBDS due to rematching between PBSY and PFFS <br> - TDR CFS coordinates include shorter PBDS |

## Damping Rings: Injection / Extraction



From the TDR (v3.II, section 6.9):
The kicker modules are $50 \Omega$ stripline structures inside the vacuum pipe, each 30 cm long with a 30 mm gap. The required kick angle to extract the damped low emittance ( $\sim 0.5 \mathrm{~nm}$ rad) bunch is $\sim 0.6 \mathrm{mrad}$ and nearly twice that for the large $\left(\sim 7 \times 10^{-6} \mathrm{mrad}\right)$ injected bunch.

The septum magnets are modeled after the Argonne APS injection septa. The thin ( 2 mm ) septum magnet has a 0.73 T field, and the thick $(30 \mathrm{~mm})$ septum magnet has a 1.08 T field. Each magnet has an effective length of 1 m .

## Positron Damping Ring (DTC04): Extraction



## Positron Damping Ring (DTCO4): Injection



## EDR + ELET + UPT + pSource + PDR + PLET



## Close-up: Central Region



Note: e-/e+ path length difference, modulo the DR circumference, is 293.141 m (Ewan and Benno reported 293.6 m at the August 222014 ADI meeting ... )

## To Do List

- gather the remaining files
- eSource files
- dump lines, abort lines, auxiliary source (?), ...
- deck "cleanup"
- remove unused stuff
- make sure names and definitions are unique
- redefine deck "numbering" sequence
- check and fix the matching throughout
- i.e. ELTL/PLTL
- earth's curvature following and vertical dispersion compensation
- decide how to handle lattice modifications that effect the CFS geometry
- EBSY/PBSY laserwire chicane lengths
- converting e-fast abort line in EBSY to DC tuneup line (?)
- e-/e+ path length / global timing adjustments
- aim for a controlled and fully documented release of a complete "ILC2014a" deck set

