Update on the distinction of particle type in the very forward calorimeters

S. Lukić, J. Mamužić, G. Kačarević

Vinča institute of nuclear sciences, University of Belgrade

25th FCAL Workshop, 12-13 October 2014

- Context
- 2 Longitudinal EM shower profiles
- 3 Distinction by the longitudinal profile (only)
- 4 Modifications of the clustering algorithm
- Results
- 6 Summary and Future Plans

Context

Information available in the FCAL region

- No tracking nor hadronic calorimetry
- Fine details of showers buried in the noise
- Longitudinal and transverse profiles available for the analysis, subject to fluctuations and "competing" with background
- Frequent pileup with Bhabha particles in BeamCal
 - Useful region above ca. 30 mrad

Longitudinal profiles of 300GeV showers at 30 mrad after background subtraction

Information available in the FCAL region

- No tracking nor hadronic calorimetry
- Fine details of showers buried in the noise
- Longitudinal and transverse profiles available for the analysis, subject to fluctuations and "competing" with background
- Frequent pileup with Bhabha particles in BeamCal
 - Useful region above ca. 30 mrad

Transverse profile of a 300 GeV shower at 30 mrad after background subtraction:

Longitudinal EM shower profiles

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{dE}{dx}(x+x_{start})=kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$
 - a and b depend on energy
 - \bullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{\mathrm{d}E}{\mathrm{d}x}(x+x_{start})=kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$
 - a and b depend on energy
 - \bullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx} \text{ (Longo and Sestili, NIM 128, 1975)}$
 - a and b depend on energy
 - ullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$ (Longo and Sestili, NIM 128, 1975)
 - a and b depend on energy
 - ullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$ (Longo and Sestili, NIM 128, 1975)
 - a and b depend on energy
 - \bullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Fully contained in the forward calorimeters
- Can be parametrized via the Gamma distribution: $\frac{dE}{dx}(x + x_{start}) = kx^{a-1}e^{-bx}$ (Longo and Sestili, NIM 128, 1975)
 - a and b depend on energy
 - ullet Fluctuations of the profile, notably the shower start x_{start}

300 GeV photon shower profile in BeamCal (without background).

Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

- Not contained in the forward calorimeters
- Very random profiles, often with multiple clusters

300 GeV π^+ shower profile in BeamCal (without background) Extracted from Mokka data using André's BeamCal Clusterer library

Distinction by the longitudinal profile (only)

Basic strategy

- In case of EM showers, one can define a <u>typical</u> shower profile with one free parameter $-x_{start}$
- Perform type distinction by the maximum correlation coefficient with the typical profile,

$$\rho_{max}(h,f) = \frac{\sum_{i=1}^{N_h} h_i f_i(x_{start}^*)}{\sqrt{\sum_{i=1}^{N_h} h_i^2} \sqrt{\sum_{i=1}^{N_h} f_i^2}}$$
(1)

 $h_i =$ "data" (histogram) $f_i(x_{start}^*) = f(x_i - x_{start}^*) =$ "pattern" (function describing the typical EM shower)

The typical EM shower

- Looking for the average profile shape relative to x_{start}
- Solution: average central moments of the Gamma distribution
 - The 2nd and 3rd central moments describe the Gamma distribution uniquely and independently of the longitudinal position of the shower
 - $a = 4\frac{\bar{\mu}_2^3}{\bar{\mu}_3^2}, \qquad b = 2\frac{\bar{\mu}_2}{\bar{\mu}_3}$
 - Energy dependence of a and b can be calibrated from data (simulation or test-beam data)

Energy dependence of a and b

- a and b both depend on energy as, for example, $a = p_{0,a}log(p_{1,a}E)$
- a and b determined for electrons and photons at several incident energies in the range 50 – 1500 GeV, fitted the dependence
- Consistent values of a and b for e^{\pm} and γ $\rightarrow e^{\pm}$ and γ have **the same** longitudinal profile (up to a small difference in x_{start} distribution)

Dependence of the profile parameter a on the incident energy

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

- Plot the Gamma distribution over individual profiles:
 - a and b determined from the global calibration, using the "data" energy
 - x_{start} selected for maximum correlation
 - k (the norm) selected to give the same integral

300 GeV photon shower profile in BeamCal (without background), with "matched" Gamma distribution from the global calibration

Modifications of the clustering algorithm

Clustering

- Subtract average background deposition from all pads
- ullet Look for pads with remaining deposition above $N\sigma$ background fluctuation
 - Background is <u>not</u> normally distributed 1-sided fluctuations above 4σ in more than $\overline{2}\%$ of all pads
 - ullet Optimal cut at 6σ (1% random fluctuation)
- Look for towers with an **uninterrupted** array of at least $N_{min.size}$ pads above $N\sigma$ cut (Note: this favors EM showers over the hadronic ones)
- ullet Cluster neighboring towers passing the size cut + one neighboring level of individual pads passing the $N\sigma$ cut
- Reject clusters smaller than 2x the tower size cut
- Determine the position of the cluster $\theta_{cluster}$, $\phi_{cluster}$ from weighted pad centres
- Extract shower profile from all pads within a cylinder with radius ρ , centered at $\theta_{cluster}$, $\phi_{cluster}$

Results

Distinction by the longitudinal profile

- Plot of the correlation coefficient for EM and hadronic showers
 - Coefficient very close to 1 for all EM showers
 - Wide distribution for charged pions
 - Selection can be made by an energy-independent cut on the correlation coefficient

Distinction by the longitudinal profile

- Plot of the correlation coefficient for EM and hadronic showers
 - Coefficient very close to 1 for all EM showers
 - Wide distribution for charged pions
 - Selection can be made by an energy-independent cut on the correlation coefficient

Distinction by the longitudinal profile

- Plot of the correlation coefficient for EM and hadronic showers
 - Coefficient very close to 1 for all EM showers
 - Wide distribution for charged pions
 - Selection can be made by an energy-independent cut on the correlation coefficient

Summary and Future Plans

Summary

- Distinction by the longitudinal shower profile: Correlation coefficient between the "typical" longitudinal EM shower pattern and the detected shower
 - Fast procedure
 - Small number of parameters to calibrate (5, including the energy calibration)
 - All EM showers show similar distributions, and very different to the hadronic showers
 - Robust in high-background conditions
 - 2 to 40% (depending on energy) hadronic showers pass the cut at 20 mrad
- Clustering was adapted to preserve the shower profile in the conditions of high background level
- Particle discrimination implemented in the BeamCal clustering library
 - FCAL/Software/FCalClusterer/branches/particleDiscrimination

Future plans

- Clean up the code
- Try to increase the sensitivity of the clustering algorithm, reduce the fake rate and not favor EM showers
- Optimize energy extraction
- Add transverse characteristics of the profile to the procedure
- Add LumiCal
 - The clustering algorithm should provide the longitudinal profile and energy of the shower
 - Challenge: Intermediate angles between BeamCal and LumiCal
- Test in concrete physics analysis cases