LumiCal Performance with a Tracking Detector

Oleksandr Borysov Tel Aviv University

FCAL Meeting, Belgrade October 13, 2014

Outline

- Introduction and motivation for the study
- Simulation with LuCaS
- Reconstruction with LumiCal clustering software
- LumiCal with and without tracking detector
- Summary and plans

Tracking Detector

- Improve polar angle measurement accuracy;
- LumiCal alignment;
- Provide more information to enable e/y identification, important for various physics study.

As a possible candidate could be Mimosa sensor

- Mimosa MOS Active Pixel, developed in Strasbourg.
- Mimosa-28 is used in STAR inner tracker at RHIC, possibly will be approved for ALICE ITS upgrade;
- We are developing the facilities for Mimosa test at TAU;
- Important to evaluate the radiation dose and radiation hardness of the Mimosa sensor.

Generated Events

- Subset of 2000-5000 events out of 10000 were used for simulation
- Each event contains one e⁻, 250 GeV;
- Uniformly distributed on momentum ϕ (0, 2π), θ (41, 69 mrad).

Simulation

 Modified versions of LuCaS (Geant4 application) was used;

Range cut: 20 μm (5 μm also was tested);

Minimum step: 5 μm;

Physics list: QGSP_BERT;

Two layers of Si 100 µm thick;

Different distance to LumiCal;

Comparison of Geant4 visualization and reconstruction from the hits

Tungsten was considered to have more secondary particles

Comparison of Geant4 visualization and reconstruction from the hits

Tungsten was considered to have more secondary particles

Energy Deposition and Step

Primary Momentum Direction Change

Distance from tracking sensors to LumiCal

5 cm + 5 cm;

15 cm + 5 cm;

25 cm + 5 cm;

Momentum change of primary track

Momentum change of primary track

Momentum change of primary track

Secondary Rec. Points

Dist. (cm)	5	10	15	20	25	30
Prim ev.	2400	2400	2400	2400	5000	5000
Second trck	4053	3235	3355	2649	5789	4554
sec/prim	1.69	1.35	1.4	1.1	1.16	0.91

LuCaS – Reconstruction Coordinates Mismatch

Reconstruction in LumiCal

2 cases:

- without tracking detector (air);
- with 2 layer of 100 μm thick Si.

$$\theta$$
_gen – θ _reco;

E_reco;

Energy reconstruction

Summary and Plans

- There is significant occupancy of tracking detector caused by the scattered particles from LumiCal. It decreases as we move further from LumiCal.
- There is no visible influence of tracking detector on LumiCal performance, though more tests should be made with higher statistics and numerical evaluation.
- Include tracking detector in φ , θ reconstruction.
- Study different configurations of tracking detector.

Backup

LuCaS with qt UI

Geometry and Hits Implementation in LuCaS

```
= Setup::Beam Crossing Angle / 2.;
 rotAng
  rotAng1
              = 180.*deg - rotAng;
  rotAng2
              = rotAng;
G4Transform3D trans1( G4RotationMatrix().rotateY(rotAng1),
                          G4ThreeVector( 0., 0., zpos).rotateY(rotAng1));
    G4Transform3D trans2( G4RotationMatrix().rotateY(rotAng2),
                          G4ThreeVector( 0., 0., zpos).rotateY(rotAng2));
                  new G4PVPlacement( trans1 ,
                                     logicWholeLC,
                                     "LumiCalDetector1",
                                     logicWorld,
                                     false,
                                     1);
                  new G4PVPlacement( trans2,
                                     logicWholeLC,
                                     "LumiCalDetector2",
                                     logicWorld,
                                     false,
                                     2);
    G4ThreeVector LocalHitPos = theTouchable->GetHistory()-
GetTopTransform().TransformPoint(GlobalHitPos);
          G4double rho = LocalHitPos.getRho();
          G4double phi = LocalHitPos.getPhi();
```

Δφ

