

GEANT4 simulation of the TB 2011

Alina-Tania NEAGU, Titi PREDA

Institute of Space Science, Bucharest, ROMANIA

- GEANT4 simulation of the deposited energy in GaAs sensor
 - Fluctuation of the energy deposition in GaAs
 - Distribution of e-h pairs
 - Comparison with TB data
- 2. GEANT4 simulation of the longitudinal development of EM shower in Tungsten, registrated with a GaAs sensor
 - Deposited energy spectrum in GaAs sensor for $t_W=1\ X_0$, $2\ X_0$, $3\ X_0$ $14X_0$
 - Distribution of N $_{e^-,\,e^+}$, and N $_{\gamma}$ after a given width of Tungsten layer
 - Comparison of the simulated deposited energy with TB data
 - Gamma fits of the simulated deposited energy and TB data
- 3. Conclusions

GEANT4 $\Delta E/\Delta x$ fluctuation in GaAs sensor

$$E_e$$
 = 1, 2, ..., 10 GeV
width_{GaAs} = 300 μm
Step = 1 μm

$$<\Delta E>_{sim}$$
= 1.255 $MeV*cm^2/g$ for 300 $\mu m~GaAs$
 $<\Delta E>_{NIST}$ = 1.862 $MeV*cm^2/g$

Number of e-h pairs in GaAs sensor

 $N_{\rm e-h_{max}}=137~pairs/\mu{\rm m}$ $< N_{e-h}>=162~{\rm pairs}/\mu{\rm m}$ (161 e –h, Olga Thesis, 2013, p 105) Average energy for creation on an e-h pairs in GaAs = 4.1 eV

A comparison between experimental and simulation data

- there is a difference between the experimental and GEANT4 dE/dx distributions
- 2. In GEANT4 simulation was changed only the step but it was used default mean ionisation potential Imin =384.9 eV.
- 3. Necessary to take into account electromagnetic interaction of incident electron with atomic electrons on different energetic levels.

Tungsten layers & GaAs sensor

Experimental and simulation conditions

Experimental

- E_e = 4 GeV
- 1 GaAs sensor after t=2 X_0 , 4 X_0 14 X_0

Simulation

- E_e = 4 GeV
- 1 GaAs sensor after t=1 X_0 , 2 X_0 , 3 X_0 14 X_0

Main task was to determine

- 1. Deposited energy in GaAs sensor after each W layer
- 2. Number , coordinates, energies of $\,e^-,\,e^+,\,$ and γ on the GaAs sensor
- 3. Comparison of simulated data with avalaible experimental data in FCAL
- 4. Gamma function fits of simulated and experimental data

Simulation of deposited energy spectrums

ISS

	Fabjan & Geanotti 2003	Rossi
Ec [MeV]	8.10	7.43
X ₀ [mm]	3.5	0.31
$t_{max}[x_0]$	5.7	5.3
t ₉₅ [x ₀]	21.2	20.1

 $R_{M} = 9.1 \text{ mm } (2.6 \text{ X}_{0})$

Spectrums of e⁻, e⁺, and γ numbers at $t = 4 X_0$

Description of the longitudinal shower profile (1) - GEANT4

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$
$$t_{max} = (a-1)/b$$

a=
$$3.45 \pm 0.1$$

b= 0.48 ± 0.02
 t_{max} = $5.05 X_0$

$$a = 2.69 \pm 0.001$$

 $b = 0.4 \pm 0.0$
 $t_{max} = 4.98 X_0$

ISS

Conclusions

- 1. GEANT4 simulation of the e- passage through GaAs sensor with **step=1** μm and **Imin =384.9 eV** doesn't reproduce satisfactory TB data.
- 2. GEANT4 simulation of the longitudinal EM shower development by 4 GeV electrons is in quite good agreement with experimental data in HH mode
- 3. The shapes of simulated & TB longitudinal shower profiles are well described by fits based on Gamma function.

