The SCIPP FCAL Simulation Group The group consists of UCSC undergraduate physics majors Christopher Milke (Lead)* 4th year (will stay for 5th) Bryce Burgess 4th year Olivia Johnson 2nd year Plus interest from two more students (one in mathematics) that may join soon Lead by myself, with technical help from Norman Graf *Supported part time by our Department of Energy R&D grant # First Issue: Differing Views on BeamCal S/N Several groups have presented layer-by-layer mean deposition for BeamCal signal and background - University of Colorado (DBD studies) - DESY (Lucia Bortko) - SCIPP/SLAC ("official" SiD version) - o SiD02 - SiDLoi3 - SiDLoi3 with anti-DID fields There are noticeable differences ### SiD02 S/N: Colorado vs. SCIPP/SLAC Compare at layer 8 Small (~50%) difference between frameworks Colorado: S/N = 1/100 (with anti-DID field) SCIPP/SLAC: S/N = 1/250 (without anti-DID field) SCIPP/SLAC: S/N = 1/150 (estimate of effect of anti-DID field) ## SiD02 vs. SiDLoi3 (SCIPP/SLAC Only) SiD02 → SiDLoi3 leads to x2.5 increase in backgrounds Cause under study ### The European Perspective #### Longitudinal development - From 2009 - Similar to Colorado results (1/100) (anti-DiD?) - But different L*, right? # The SCIPP Reconstruction Algorithm and Background Sensitivity #### Nomenclature: Tile: An individual BeamCal segment Palette: A collection of tiles within a layer, centered on a given tile and including some number of neighbors "P0" = tile alone "P1" = tile + nearest neighbors "P2" = P1+next-to-nearest neighbors Cylinder: A palette extended through the depth of the BeamCal # Details of the SCIPP Reconstruction Algorithm For any given segmentation strategy and scale, we don't know which palette choice will be optimal (P0, P1, P2,...) → Explore efficiency/purity with several choices and take best for that segmentation scheme For each palette choice, perform the following event-by-event - Subtract mean background from each palette - Seed reconstruction with 50 most energetic palettes - •Extend these 50 palettes into cylinders, summing energy along the way - •Accept as signal candidate any event for which the most energetic cylinder is greater than a cut ("sigma cut") expressed in terms of the rms width of the mean-subtracted background in that cylinder # More Details of the SCIPP Reconstruction Algorithm #### Choice of the value of the sigma cut - •BeamCal used to detect electrons/positrons from low-Q² twophoton event that can mimic degenerate SUSY scenarios - •SUSY signal events will have no forward e⁺ or e⁻ so it will look like a "background" event in the BeamCal - •The fraction of BeamCal background events mistakenly identified as BeamCal signal events (and thus rejected) is a SUSY-signal inefficiency - •The sigma cut is selected to mis-identify 10% of BeamCal background events as BeamCal signal events With this cut established, the efficiency of the BeamCal reconstruction algorithm can be explored as a function of radius #### "Palette" Size Selection Optimize 50GeV reconstruction efficiency@10% fake rate # Effect of S/N on BeamCal Reconstruction Performance I x2 background achieved by overlaying the two (±z) halves of the BeamCal ("Original" in plot) - Model is SiD02, no anti-DID - So "Original", with the x2 background, is close to SiDLoi3 no anti-DID (most conservative of all models) ## Effect of S/N on BeamCal Reconstruction Performance II # Effect of S/N on BeamCal Reconstruction Performance III ### Tiling strategy and granularity study #### Constant 7.6x7.6 5.5x5.5 3.5x3.5 #### Variable Lucia nom. (Lucia nom.)/√2 (Lucia nom.)/2 ## Comparison of Segmentation Schemes Overall Efficiency vs. # of pixels #### Efficiency v. #pixels in radial slices (50 GeV) ### **Parting Thoughts** - The SCIPP BeamCal reconstruction is up and running - We have produced some preliminary optimization studies, but are just now beginning to think about how to proceed - Communication/collaboration with DESY (Lucia) will be important, starting with implementation of the DESY reconstruction within the SLAC/Santa Cruz framework for a head-to-head comparison - May begin to turn towards physics studies as well #### Efficiency v. pixel density in radial slices ### Efficiency v. #pixels in radial slices (50 GeV)