LumiCal Alignment System Status report Leszek Zawiejski, Tomasz Wojtoń, Arkadiusz Moszczyński Institute of Nuclear Physics PAN, Cracow # The design of the alignment system The alignment system may include two components: IR laser + PSD system: infra-red laser beam and semi-transparent position sensitive detectors • FSI system: tunable laser(s), beam splitters, isolator, Fabry-Perot interferometer, retroreflectors, fibers, collimators, photodetectors, lens FSI - Frequency Scanned Interferometry The absolute distance measurements between LumiCal's IR Laser + PSD Relative positions of LumiCal's and displacements of the internal Si layers # Bottom Electrodes Active area 5 mm x 5 mm Strip pitch 312.5 um Strip gap 10 um asi thickness 1 dum Indium Tin Oxido 100 nm Glass substrate Glass substrate ### Light transmission: above 85% for $\lambda > 780$ nm An example: beam profile signals from the X-strips along the moving beam. The available aperture for laser beam is 5 x 5 mm² for sensor. The mean positions **mx**_i were obtained from a Gaussian fit to observed signals ### Position sensitive detectors ### Laser beam position measurements Fluctuations increasing with distance along the laser beam. They can be related to: laser instability with an increase of beam diameter and noise of the sensor. Data from laser working for hours show smaller fluctuations # Position measurements The method of using a residual approach The mean position of sensors 1 and 6, **mx**, **my** define the reference straight line. The expected position of the beam at sensor plane i: $$\Delta x_i = rac{\mathsf{mx_1}}{z_6 - z_1} + rac{z_6 - z_1}{z_6 - z_1} + rac{\mathsf{mx_6}}{z_6 - z_1} egin{matrix} z_i - z_1 \ z_6 - z_1 \end{bmatrix} \ \Delta y_i = rac{z_6 - z_i}{z_6 - z_1} + rac{\mathsf{my_6}}{z_6 - z_1} egin{matrix} z_i - z_1 \ z_6 - z_1 \end{bmatrix} \ egin{matrix} z_6 - z_1 \ z_6 - z_1 \end{bmatrix}$$ ### Residuals: $$Rx_i = \Delta x_i - mx_i$$ $Ry_i = \Delta y_i - my_i$ ### Position sensitive detectors: status - Using the components from University of Oxford (semi-transparent silicon sensors, lasers, readout electronics) we built a simple setup prototype of the laser alignment system. - The measurement of displacements performed with the help of this prototype provided the value of about 20 μm as the accuracy in the measurement positions. One can expect that such a kind of laser alignment system could be used in the future to monitor the relative displacement of a particular detector. - The elements used in the prototype (lasers, sensors, readout electronics, DAQ) are older than 10 years and are large and heavy and hence it would be more difficult to install such a system on the test beam. Moreover, minimization is required for future applications. - Possible solution: as the new X,Y sensors are practically unachievable, one should try to use results of EUDET project on transmissive, microstrip sensors (1x1 cm²) which give output information related to one plane. X, Y data can be obtained from two such sensors put closely to each other (to build a system Isuch as a telescope (tracker). The readout and DAQ system for these sensors were built by a Spanish company ALIBAVA and a basic version costs ~ 6000 euros for reading of 16 planes sensors. Of course, additional money will be spent on sensors production. ## FSI - interferometric absolute distance measurement FSI is based on a tunable laser and a frequency scan range subsystem using Fabry-Perot (FP) interferometer. When optical frequency of the laser is scanned continuously over the range Δv , then for a fixed path interferometer the optical beams will constructively and destructively interfere and will form fringes. The frequency scan range is defined by: $$\Delta v = r * FSR$$ FSR – free spectral range – is characteristic for FP r – number of FSR resonances detected during Δν scan. Together with the knowledge about N – number of detected fringes n- refractive index of the propagation medium, the measured distance L which is optical path difference OPD between two arms of a Michelson interferometer: is given by: $$L = N/2 * c /(r * FSR *n)$$ c – speed of light FSR for FP is equal 1.5 GHz (0.002 nm) # The experimental setup used in the FSI study # First FSI prototype Typical view displayed by the oscilloscope # Laboratory: Data Acquisition Measured signals in 1 sec window Filtered signals with the same window: 5000 samples/sec ### First measurements Typical FSI interferometer and Fabry-Perot signals used in distance calculations. Amplitudes are indicated by dots for illustration. The maximal available Δv range is above 6 THz. # Problem: non standard output Several non typical output signals were observed during the frequency scan Examples: ### Possible reasons: - during the scan over the required Δv range, the laser (primarily running in a single mode) switches to other (multi) modes spontaneous "hop". This behaviour repeats quiet regularly and weakly depends on the velocity of the scan. The most likely explanation is a problem with the running motor. - Such discontinuities make the measurements problematic and the possible temporary solution is the scan composed of the number of shorter frequency scans - influence of other effects, such as temperature changes, vibration, drift. Futher research is necessary, in particular checking the laser quality by the producer. # Method of measurements Scan over the whole Δv range Measurements in the selected regions of Δv are not perfect but acceptable ### FSI - status - The first experimental setup, including optical elements and DAQ system was built and tested - During the scan over the available Δν range several non standard signals were recorded. Most probably, the nature of the observed problems has a source in inproper work of the laser motor and requires the producer intervention. An attempt to carry out distance measurements in a continuous manner over the whole range of Δν leads to large fluctuations in final results with the error exceeding even 1 mm. - As the results, the measurements can only be made in separated intervals of Δv . The first such measurements led to σ error on the level of 150 μ m. - The complete analysis should take into account this restriction together with the impact of other effects such as changes in temperature, vibration, drift, ... of course if Sacher laser still will allow us to do this. # Conclusion and Future expectations - The current design of the LumiCal alignment system is based on two methods for displacement measurements. They are related to: - semi-transparent sensors - and interference phenomena of the laser beams. - Simple prototypes were built to test both methods. - The preliminary measurements made with help of both prototypes give hope to use these methods in the future for the final alignment system. - This will require the global approach to the measurement of the positions of Lumical (if still such a system will be needded). - However, the implementation of the new system however, will involve high costs (replacement of existing optical elements and the need to purchasing the new ones), man power and possible cooperation with other forward detectors and the machine people (magnets QD0).