New idea for mechanical structure

Itamar Levy

Behalf of the TAU team

FCAL Workshop, May 2014

Motivation

- In the context of this test beam we started to think on the next step toward a full prototype.
- One of the main issue for a realistic design of the calorimeter is compactness.
- The 1 mm pitch is between absorber layer is a key element in the FCAL design.
- For current of further readout.
- What will we do next test beam?
- We tried to started some discussion on this issues in the last weeks.

NEW SENSOR BOARD FOR TEST BEAM

Sensor : 320 μm thickness

Fan-out : kapton 50 μm thickness

HV: kapton 50 μm thickness

The complete "edge" : $600 \mu m$

Full detector is 450 μm depth :

- 320 μm detector
- 50 μm kapton HV
- 50 μm kapton fan out
- $30 \mu m$ glue

Envelope is $600\mu m$ with a $450\mu m$ cutting shape inside. It can be machined by 3D printing

Tape Automated Bonding (TAB)

- Ultrasonic bonds are made through opening etched in the polyimide base.
- The bond tool when pressing the Al towards the bond pad leaves a specific mark.
- Can be done in a regular bounding machine.

Silicon strip detector (SSD) module assembled using TAB for ALICE ITS SSD layers.

Features:

- Single point bonding;
- No wire loop;
- The bond can be covered by the glue for better protection;
- •It is difficult to repair bonding defects.

status

- After sensor assembly this summer, we realized we cant test assembled module in the lab.
- Fcal read-out board, now, is limited & mostly an available.
- LumiCAl read-out chip in new technology (as we hared yesterday) IS under development.
- We need to find something else to equip our sensors in the time being

APV25

- 128 channels chip used by the CMS tracker collaboration (silicon and gas microstrips technology)
- 50 ns shaper and amplifier.
- 3 sampling modes: peak mode, deconvolution mode and multi mode
- Intensively used by the RD51 community
- One full chain exist at Weizmann Institute : possibility to check if it fits our needs.

How to get it?

CERN Stores Catalogue

Group: 07.89

07.89.00 - RD51 SRS PROJECT

For any further technical information additionnal - click here

General description

LOW CAP DIODE NUP4114UPXV6T1G: 08.51.49.960.0

FEMALE CONNECTOR 130 CONTACTS: 09.55.42.400.3

MALE CONNECTOR 130 CONTACTS: 09.55.42.410.6

Buy	SCEM Code	Unit	Unit Price	DESIGNATION	TYPE / REF	FIG.
	07.89.00.005.9 i	PC	158.4	RD51 APV25 HYBRID MASTER	EDA-02075-V4-0	1
	07.89.00.010.2 i	PC	140.8	RD51 APV25 HYBRID SLAVE	EDA-02075-V4-0	2
■	07.89.00.020.0 i	РС	794.2	MINICRATE CHASSIS	-	-
	07.89.00.030.8 i	PC	809.6	EUROCRATE CHASSIS	-	-
■	07.89.00.100.1 i	PC	1595.0	RD51 SRS FEC CARD	-	3
	1					1

Board for electronic test

- As a first step we need to have a sensor board with right connection.
- We started to design (external designer) a board based on the current LumiCal board.
- Separate standard connector :
 - For HV.
 - For signal (Panasonic 130 pin connector).

Design board

plans

- Test Beam...
- After the test beam:
 - Design the kaptons (already started) and produce it.
 - Create a "fake" 320 μm sensor (started at Tel Aviv University)
 - Design and print the envelop (can be done at CERN)
 - Glue the whole system on a "fake" tungsten at CERN.
- In parallel, design a 2.4 mm PCB with 130 pin connector to check the APV25 (or any available chip). Started at Tel Aviv.
- By the beginning of 2015, we should have a first "fake" prototype of sensor+tungsten and some results of the sensor with the APV25.