

BDS review meeting Ichinoseki, 4th September

Nick Walker 113th ILC@DESY meeting — 19.09.2014

BDS Lattice Review

Thursday, September 4, 2014 from 12:00 to 18:00 (Asia/Tokyo)

Description Charge of review meeting: review the current TDR baseline optics and assess the level of completeness from the viewpoint of optics, backgrounds & collimation, beam dynamics and diagnostics. Review the current state of the xsif decks in subversion repository and discuss future deck standards (AML/XML). Review the status of alternative FFS optics and review work required for formal comparison and potential future selection as baseline given CFS timing and resource constraints.

Thursday, September 4, 2014

12:00 - 13:30	TDR Baseline Optics Review: http://fuze.me/25893330 Review of work ongoing pertaining to the TDR baseline description. Conveners: Nicholas Walker (DESY), Dr. Glen White (SLAC)				
	12:00 Status of ILC decks 15'				
	Speaker: Mark Woodley (SLAC)				
	Material: Slides 🔨 🔂				
	12:15 Status of baseline BDS optics design 30'				
	Speaker: Dr. Glen White (SLAC)				
	Material: Slides 🔁 🐏 🔻 🔂 🕶				
	12:45 Extraction line system updates 15'				
	Speaker: Dr. Glen White (SLAC)				
	13:00 3.5m/4.5m L* FFS optics matching 30'				
	Speaker: Dr. Toshiyuki Okugi (KEK)				
	Material: Slides 🔂				
14:00 - 15:00	Diagnostics & Simulations: http://fuze.me/25893330				
	Conveners: Nicholas Walker (DESY), Dr. Glen White (SLAC), Dr. Stewart Boogert (Royal Holloway, University of London)				
	14:00 Diagnostics 30'				
	14:30 Cross-simulation support options (UAP/AML) 30'				
15:30 - 18:00	TDR Baseline Lattice Discussions: http://fuze.me/25893330				
	Work ongoing on alternatives to the TDR baseline optics				

Conveners: Nicholas Walker (DESY), Dr. Glen White (SLAC)

Lattice integration (M .Woodley, SLAC)

- History: SLAC was responsible for complete lattice integration for the RDR
 - M. Woodley
 - Since 2008 (black December) not involved
- Picking up where (SLAC) left off in 2008
 - Thanks to some available money (but limited)
- M. Woodley currently trying to bring lattice files "up to TDR spec"
 - checking for errors in lattice decks
 - confirming TDR documentation
 - confirming overall lattice/tunnel lengths ("global timing")

Extremely pleased to have Mark back on board!

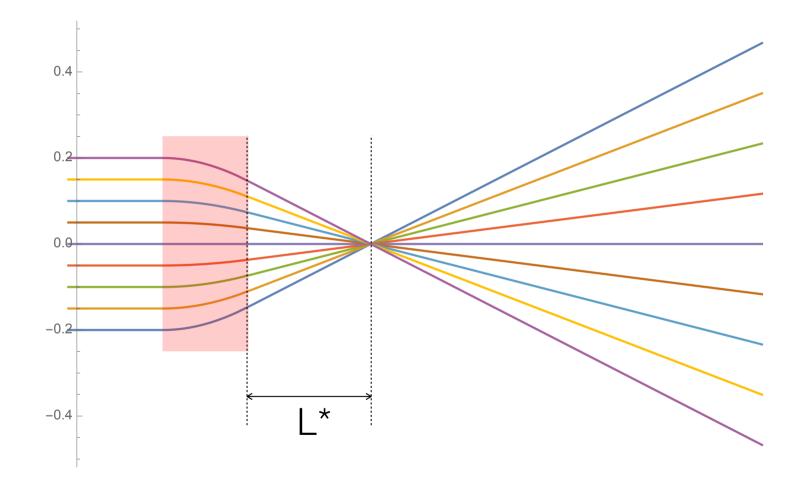
EDescription for 2 objects EDEscription for 2 objects	BIG thumbs-up for EDMS (and Benno :-)			
31 EFTL Detection Fing to Links P 39 ELT. Long vent/invel/point F 28 40 EURIN Turnavoid F 29 101 Lattice 40 EURIN Sign rotation F 29 101 Lattice 41 ESTN Dank Compressor, Sage 1 31 31 43 EEC2 Dank Compressor, Sage 2 33 201 Lattice 46 ELC2 Main Links and Proint E-ATTINL to ML 34 202 CFS Cr. 45 EXALVE_2ML TextFML Low ML 34 202 CFS Cr.	EDMS: Treaty Point Definitions			
Thanks to Benno and to all who helped to assemble the brilliantly cross-referenced EDMS document archive!30 30 40 41 	international linear collider Main Linac Treaty Points Benno List Version 5.0 23.05.2012 EDMS ID 5.0 23.05.2012 This document defines the treaty points between RTML, Main Linac, Positron Source Undulator	International linear collider Main Linac Treaty Points Version 5.0 23.05.2012 Treaty Point TERTML2ML TPSZEBDS TPRTML2ML TPML2BDS Electron RTML to Main Linac Electron Main Linac to BOS Positron RTML to Main Linac to BOS Positron RTML to Main Linac to BOS		
	V section, and BDS. Image:	Positron Source Section) to (Undulator Geometry HLRF Scheme KCS DKS Electron BDS X [m] 104,52540 104,85593 26,540 17,440 94,6204 94,9344 17,433 Y [m] 0 0 0 0 0 0 0 0 0 Z [m] -14471,7801 -14519,1269 -3331,319 -2253,464 13279,10984 13323,96674 2252,514 Ø [rad] -0,00700 -0,00700 -3,13459 -3,13459 -3,13459 -3,13459 Ø [rad] 0 0 0 0 0 0 0 Ø [rad] 0 0 0 0 0 0 0 Ø [rad] 0 0 0 0 0 0 0 0 Ø [rad] 0<		
	Revision History: Version Date Author Remark 0.9 25.11.2011 B. List First Version 1.0 15.11.2012 B. List Machine protection and collimation (MPSCOL) section moved to Main Linac 2.0 22.02.2012 B. List Added final Main Linac Length 3.0 23.02.2012 B. List New twiss functions at ML start, values from Valery Kapin 5.0 23.05.2012 B. List Split RTML to ML treaty points between KCS and DKS	$\begin{tabular}{ c c c c c c c } \hline \hline Optics Functions \\ \hline \hline α_x[1] & -1,142 & -2,4018 & -2,4018 & -1,142 & -2,4018 \\ \hline β_x[m] & 52,67 & 51,332 & 51,332 & 52,67 & 51,332 \\ \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline n_x[1] & 0 & 0 & 0 & 0 & 0 \\ \hline n_x[1] & 1,279 & 0,48877 & 0,4888 & 1,279 & 0,48877 \\ \hline β_x[m] & 70,74 & 9,3954 & 9,395 & 70,74 & 9,3954 \\ \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline n_x[1] & 0 & 0 & 0 & 0 & 0 \\ \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline \hline \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline \hline \hline \hline n_x[m] & 0 & 0 & 0 & 0 & 0 \\ \hline \hline$		
	Absolutely essential!	Input: ELIN PLIN Main Linac Length [m] 11140,734 11188,082 11026,866 11071,714 Reference: ILC SCRF Cryogenics parameters for KCS D00000000975575 D00000000991555		

Integration status

subsystems	source	doc / file	comments
EDR / PDR	EDMS	D*0960185,G,1,1 dtc04.zip	DTC04 lattice (3238.7 m DR circumference)
ERTML / PRTML	EDMS	D*0977625,B,1,1 RTML2012a.zip	KCS lattice
EML / PML	DESY svn	ilclattice-ml-dks _BL20120608 .r234.tar.gz	 A. Valishev / B. List DKS lattice: svn branch: ILC2012dks_ML_3RFU_VK201206 svn folder: ml-dks-BL20120608
EBDS / PBDS	EDMS	D*0972985,B,1,2 BDS2012b.zip	Glen and Edu are updating the BDS Final Focus and dump line lattices
PSOURCE	EDMS	D*0977535,B,1,1 ps-lattice-2012a.zip	W. Liu / W. Gai TDR lattice • described in IPAC2012 paper TUPPR041

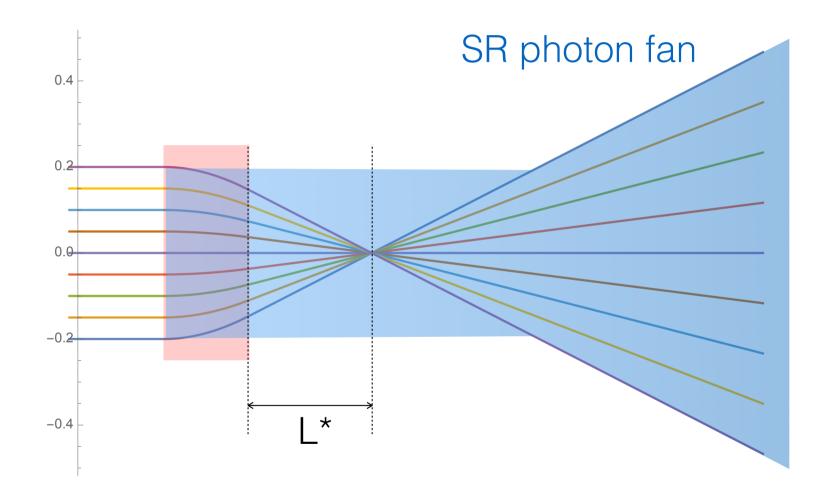
- Picked up all EDMS lattice files
- Checked for geometry, agreement with TDR / TDD documents etc.
- Integrated and match optically (on-going)
- Found one "error" in BDS laser-wire chicane
 - cut and paste lattice file mistake
 - ▶ BDS lattice can be shortened by ~32m
- Other "inconsistencies" at the ~1m level.
- Total path length "error" calculated: 293.141 m (cf 293.6 m at previous workshops)

Next (integration steps)

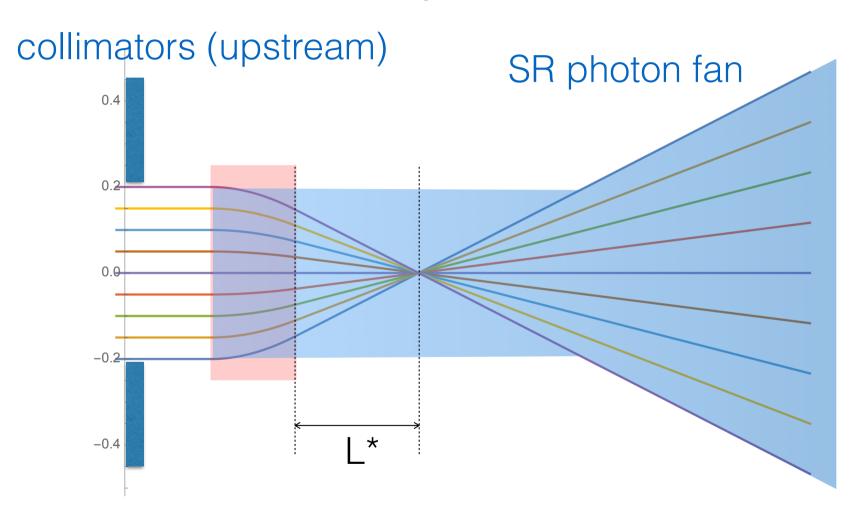

- Include "auxiliary" lines (sources, dump lines etc)
- deck "clean-up" (including documentation)
- Aiming at new lattice release ILC2014a
 - will reflect correctly the TDR geometry
 - use as starting point for future "change requests"

BDS-specific (Glen White, SLAC)

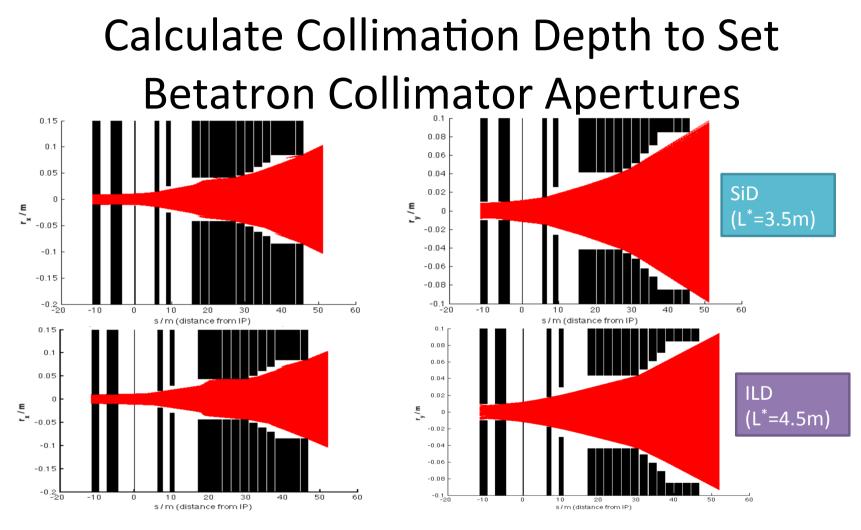
- Consolidating BDS lattice to
 - Reflect 250 GeV TDR push-pull solution (L* = 3.5/4.5)
 - Optical match: higher-order corrections (up to 3rd order)
 - Addition of new tuning magnets (ATF2 experience):
 - 4 new skew-sextupoles
 - Splitting QF7 (IP "image point") for diagnostic
- New updated lattice will be part of ILC2014a release



Collimation depth



Collimation depth



Collimation depth

G. White

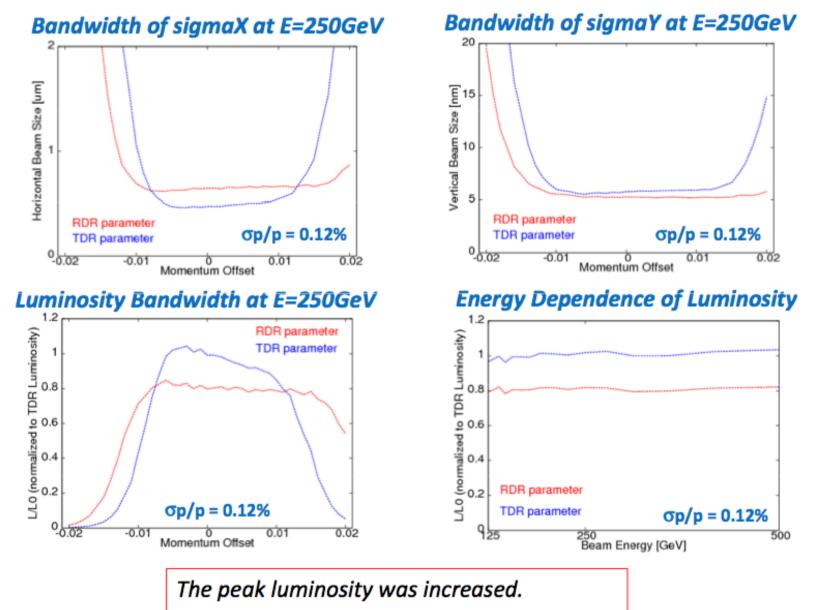
- SR from particles covering all QF1 phase-space
 - Rays not hitting apertures shown
- Aperture @ IP = 14mm (SiD), 16mm (ILD) radius inner vertex detector layer (L=125mm)

Different L* require different solutions

Betatron Spoiler Apertures

Name	L [*] =3.5m		L*=4.5m		Existing Lattice		
	X / mm (Nσ _x)	Υ / mm (Nσ _y)	X / mm (Nσ _x)	Y / mm (Nơ _x)	X / mm (Nσ _x)	Υ / mm (Nσ _y) =	=RDR
SP1	-	-	-	-	0.3 (15)	0.25 (250)	
SP2	-	-	1.24 (11)	0.2 (24)	0.3 (2.7)	0.2 (24)	
SP3	-	-	0.5 (25)	0.22 (219)	0.3 (15)	0.25 (250)	
SP4	-	-	0.59 (5.4)	0.22 (26)	0.3 (2.7)	0.2 (24)	
SP5	-	-	-	-	0.42 (11)	0.25 (250)	

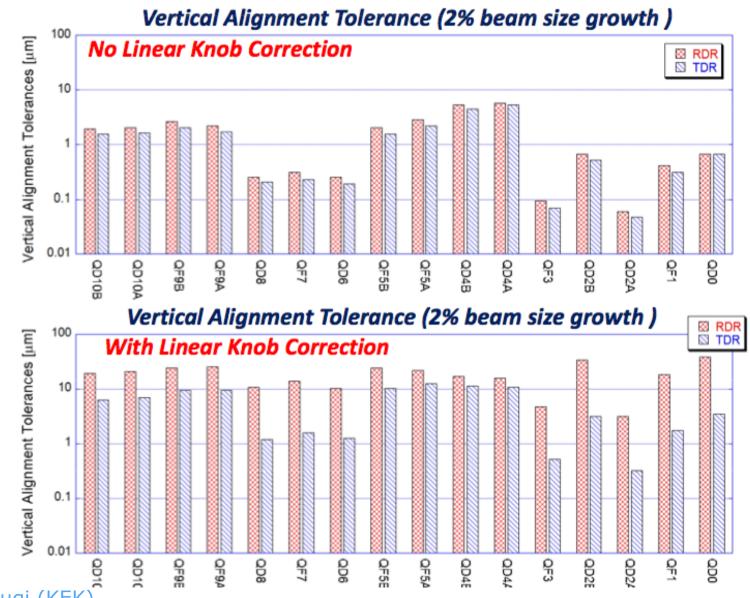
- "-" = no collimation needed at this location to prevent IR SR hits.
 - (L*=3.5m optics completely shielded by magnet apertures)
- Tightest aperture: SP2/SP4 (X)
 - $2.7\sigma = 0.7\%$ Beam loss = 36kW for existing lattice
- TDR calls for 1-2E-5 main beam loss => 4.3σ tightest collimation aperture. (Max with all muon spoiler space filled = 1E-3 beam loss => 3.3σ)
 - Tightest L*=4.5m aperture = SP4 = 5.4σ


Also: extraction line apertures (losses) collimator wake fields ~ a^{2-3}

G. White

Optical "bandwidth" & tolerances

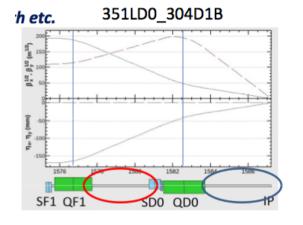
- Maximising "bandwidth" (dp/p acceptance) is the ultimate goal of FF designers
- Figure of merit for design work.
 - Linear optics, 2nd and 3rd order aberration corrections
- RDR (single L*) was last really optimised lattice
- Never really cross-checked for TDR "push-pull" optics
 - QF1 in separate cryostat and pulled clear of detector
 - ► QD0 integrated in (and moves with) detector


Performances of ILC RDR Optics (351LD0_135D1B)

Toshiyuki Okugi (KEK) But, th

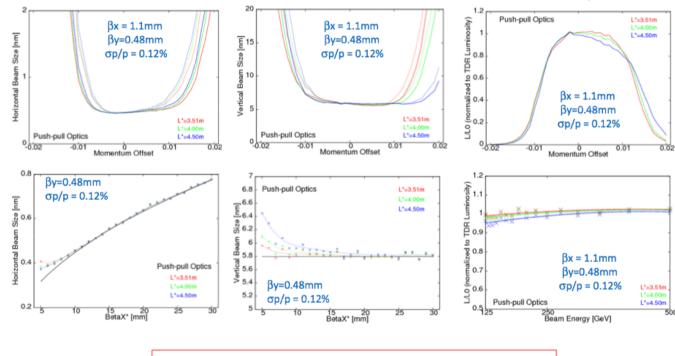
But, the luminosity bandwidth was reduced.

Tolerances of ILC RDR Optics Presented at LCWS2013 by T.Okugi


Toshiyuki Okugi (KEK)

TDR push—pull solution

Toshiyuki Okugi (KEK)


solid line ; core beam size dotted line ; rms beam size

:lr

Optimization of Push-pull optics.

The bandwidth and aberration for $L^*=3.51m$ and 4.50m was comparable to those for $L^*=4.00m$ optics.

Not just L* but location of QF1 also seems critical Achieved ~same BW performance for both L* (also for L* 7m !!) with small(er) D1 But! tolerance, collimation depth etc.

Common L*

- Theoretical optics solutions can be found for "arbitrary" L*
- However, with longer L*
 - Tolerances get tighter
 - Collimation depth gets smaller, and therefore
 - Collimator apertures get small (->wakefields)
 - Tuning may become more challenging

• In addition

- Major change of optics during push-pull will strongly influence tuning time (luminosity and potentially backgrounds)
 - and therefore recovery time
- Longer L* has higher performance risk
- Can we quantify these things?
 - We can try. But really requires substantially simulations of tuning etc.
- Change Request formally submitted by Glen White and myself