Zh branching ratios study

ILC Physics WG general meeting 2014. Aug. 30 H. Ono (NDU)

Zh Branching ratio study

Zh BR measurement is an important task on ILC Especially $h \rightarrow$ hadronic decay channel ($h \rightarrow$ bb, cc, gg) in order to compensate the LHC experiments

IIL

Higgs BR study in ILC

Important task to measure σ_{7h} xBR in ILC

Branching ratios

10⁻¹

10⁻²

10⁻³

100

110

120

130

140

- Determine **absolute Higgs BR** (σ_{7h} model independent measurement)
- Complementary study with LHC in Higgs hadronic decay channel Higgs BRs at M_b=125 GeV

High precision measurement in \overline{W}^+W hh Higgs hadronic decay channel gg <u>h→bb</u> obtain best precision in ILC ZZ $c\overline{c}$ with largest BR $h \rightarrow cc, gg$ are expected to measure γγ

in ILC

3

Higgs mass (GeV)										
BR	Mh	bb	СС	gg	ττ	ww	ZZ	γγ	Ζγ	μμ
Pythia	120 GeV	65.7%	3.6%	5.5%	8.0%	15.0%	1.7%	0.3%	0.1%	0.03%
LHCXSWG	125 GeV	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.2%	0.2%	0.02%

160

150

Signal (M_h=125 GeV) and BGs

E _{cm}	250 GeV	350 GeV		
Signal	σ (-0.8,+0.3)	σ (-0.8, +0.3)		
vvh	77.5	98.7		
qqh	210.2	138.9		
eeh	10.9	10.2		
μμh	10.4	6.9		
ττh	10.4	6.9		
Total	319.4	261.5		

SM BGs	250 GeV	350 GeV		
Signal	σ (-0.8,+0.3)	σ (-0.8, +0.3)		
2f	1.2x10 ⁵	7.2x10 ⁴		
4f	4.1x10 ⁵	3.1x10 ⁴		
6f	Not considered	1.4x10 ²		
1f_3f	1.3x10 ⁶	1.6x10 ⁶		
aa_2f/4f	5.8x10⁵	9.6x10 ⁵		

Now I concentrate to Zh channel vvh (WW-fusion) is doing with Felix (DESY)

Zh at 250 and 350 GeV analysis

Higgs mass: **125 GeV**

$$E_{cm}$$
=250 GeV: L=250 fb⁻¹, P(e-, e+)=(-0.8, +0.3)
 E_{cm} =350 GeV: L=330 fb⁻¹, P(e-, e+)=(-0.8, +0.3)
Zh process categorized by Z decay: $e^+e^- \rightarrow Zh \rightarrow vvh$, qqh, llh
Major SM BGs: $ee \rightarrow WW/ZZ$ (2f, 3f, 4f, aa, and 6f, tt for 350 GeV)

 $h \rightarrow bb$, cc, gg accuracies are evaluated with flavor template fitting

Zh→qqh analysis procedure

Apply forced four-jet clustering and select minimum χ^2 jets pair

qqh selection at 250 GeV

- 1. χ²<10
- 2. # of chd trk>4
- 3. -Log₁₀(y₃₄)<2.7
- 4. Thrust<0.9
- 5. $|\cos\theta_{\text{thrust}}| < 0.90$
- 6. 85<M_z<100 GeV
- 7. 120<M_h<135 GeV
- 8. # of Isolep<2
- 9. Likelhood>0.30

Efficiency($h \rightarrow 2j$)=34.0%

$Zh \rightarrow ee/\mu\mu h$ analysis procedure

Select di-lepton, then apply forced two-jet clustering

μ/e selection

10<E_{PFO}<100 GeV @250 GeV (10<E_{PFO}<160 GeV @350 GeV)

Calorimeter Edep information

- $E_{ecal}/E_{total} < 0.5, E_{total}/P < 0.4 (\mu)$
- E_{ecal}/E_{total}>0.9, 0.7<E_{total}/P<1.2 (e)

Require track from IP

• σ_{d0} , σ_{z0} , σ_{r0} If # of candidates greater than two, select lepton pair whose mass as close as Z mass

eeh: Signif = 16.9, Eff = 44.1% μμh: Signif = 25.1, Eff =60.8%

ILC Physics WG general meeting

- 1. # of e/μ candidate >= 2
- 2. Selected isolated leptons = 2
- 3. E_{vis}>200 GeV
- 4. NPFOs > 30
- 5. Thrust>0.8 (Thrust<0.8 at 350 GeV)
- 6. |cosθ_z|<0.9
- 7. 70<M_{II}<110 GeV
- 8. 100<M_{jj}<150 GeV
- 9. 120< M["]_{recoil} < 160 GeV

3D template fitting

Apply 5,000 times template fitting Toy MC \rightarrow Extract accuracy of sigma X BR

İİĿ

sigma x BR results

Extract measurement accuracy from template fitting

Update results		250 GeV		350 GeV		
L (fb-1)	250 fl	b ⁻¹ P(-0.8,	+0.3)	330 fb ⁻¹ P(-0.8, +0.3)		
ΔσBR/σBR	bb	СС	cc gg		СС	gg
vvh	1.6%	14.8%	9.7%	1.2%	10.9%	6.7%
qqh	1.6%	24.0%	18.4%	1.5%	15.0%	13.2%
eeh	4.4%	57.4%	36.3%	6.5%	>100%	>100%
μμh	3.4%	34.0%	22.3%	4.6%	65.7%	30.9%
Combined	1.0%	11.6%	7.6%	0.9%	8.8%	5.0%
Extrapolation	1.1%	8.0%	6.8%	0.9%	6.5%	5.2%

- eeh @ 350 GeV only ~10 events remains with h→cc samples even with L=330 fb⁻¹
- Extrapolation only consider the signal difference

Difference between LCFIPlus and LCFIVTX

LCFIPlus (with qq91_v02_p01)

İİL

Test with LCFIVTX

Prepare 3D templates processed both LCFIPlus and LCFIVTX for same Mh=125 GeV samples with same cut conditions. Apply template fitting with two types of flavor tagging.

Sample: Zh→qqh 250 GeV, L=250 fb⁻¹, P(-0.8, +0.3)

qqh 250 GeV	LCFIPlus	LCFIVTX
h→bb	1.6%	1.6%
h→cc	24.0%	26.9%
h→gg	18.4%	22.9%

BCtag variable definition is different: LCFIVTX: C-tag trained with b background LCFIPlus: BCtag=Ctag/(Btag+Ctag)

Preliminary results

- B-tagging performance looks comparable with both processor
- h→cc and gg results looks better by LCFIPlus
 It can caused by the template separation between h→cc and h→gg

LCFIVTX does not apply any optimization for new samples

Different flavor tag definition

Current definition : x-likeness = $x_1x_2/(x_1x_2+(1-x_1)(1-x_2))$

IIL

Next step and plans

- Zh channel is analyzed at Ecm=250 and 350 GeV
- Compare LCFIVTX and LCFIPlus
 - Comparable on $h \rightarrow bb$
 - LCFIPlus looks better for $h \rightarrow cc, gg$
- Try different flavor likeness definition (X₁+X₂)/2
- Check eeh channel selection code and cut optimization
- Different polarization case

BACKUP

Extrapolated results (E_{cm}=250 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =250 GeV	M _h =120	=120 GeV (L=250 fb ⁻¹) M _h =125 GeV			GeV (L=2	250 fb⁻¹)
ΔσBR/σBR	bb	СС	gg	bb	CC	gg
vvh	1.7%	11.2%	13.9%	1.8%	12.9%	11.2%
qqh	1.5%	10.2%	13.1%	1.6%	11.8%	10.5%
eeh	3.8%	26.8%	31.3%	4.0%	31.4%	25.3%
μμh	3.3%	22.6%	23.9%	3.5%	26.3%	19.1%
Combined	1.0%	6.9%	8.5%	1.1%	8.0%	6.8%

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

Cross sections at M_h=120 and 125 GeV are almost comparable in LOI samples and new samples (Lumi linker difference suppress mass diff.)

Main contribution comes from BR difference between M_h=120 and 125 GeV

Extrapolated results (E_{cm}=350 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =350 G	eV	M _h =120	GeV (L=2	250 fb ⁻¹)	M _h =125	00 fb ⁻¹)	
ΔσBR/σΕ	3R	bb	СС	gg	bb	сс	gg
vvh		1.4%	8.6%	9.2%	1.4%	9.3%	6.9%
qqh		1.5%	10.1%	13.7%	1.5%	10.8%	10.2%
eeh		5.3%	30.5%	35.8%	5.4%	33.3%	27.1%
μμh		5.1%	30.9%	33.0%	5.1%	33.3%	24.6%
Combine	ed	1.0%	6.2%	7.3%	1.0%	6.8%	5.5%
			Cro	ss sectior	120 Ge\	/ 125 Ge	
	12	UGEV 1	25 GeV				

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

	BK	120 Go\/	125 Go\/				
		120 06 0	123 06 0				
	BR(hh)	65 7%	57.8%		vvh	105.2 fb	98.7
ŀ	ואסא	03.770	57.070				
	BR(cc)	3.6%	2.7%		qqh	144.4 fb	138.9
F					1		
	BR(gg)	5.5%	8.6%		eeh	11.0 fb	10.2
			1.00				
BR, Luminosity, and σ are different				μμh	7.2 fb	6.9	

fb fb fb

fb

Current results of $\Delta\sigma BR/\sigma BR$

Higgs mass of 125 GeV for 250 and 350 GeV

E _{cm} (GeV)	250	350	500	1000
Pol (e-,e+)	(-0.8,+0.3)	(-0.8,+0.3)	(-0.8,+0.3)	(-0.8,+0.2)
Lumi (fb ⁻¹)	250 250		500	1000
Simulated samples		DBD		
M _h (GeV)	120	120	120	125
ΔσBR/σBR(h→bb)	1.0%	1.0%	0.57%	0.39%
ΔσBR/σBR(h→cc)	6.9%	6.2%	5.2%	3.9%
ΔσBR/σBR(h→gg)	8.5%	7.3%	5.0%	2.8%
ΔσBR/σBR(h→WW*)	8.1%		3.0%	2.5%

Analyses are performed on Post LOI and DBD studies

$\Delta\sigma BR/\sigma BR E_{cm} = 250 \text{ GeV}$

E_{cm}=250 GeV comparing extrapolated and simulated results

E _{cm} =250 GeV	Extrapolation			Extrapolation			
M _h	12	0 → 125 G	eV	120 → 125 GeV			
Lumi.	250 fb⁻¹			300 fb ⁻¹			
ΔσBR/σBR	bb	СС	gg	bb	СС	gg	
vvh	1.8%	12.9%	11.2%	1.4%	9.3%	6.9%	
qqh	1.6%	11.8%	10.5%	1.5%	10.8%	10.2%	
eeh	4.0%	31.4%	25.3%	5.4%	33.3%	27.1%	
μμh	3.5%	26.3%	19.1%	5.1%	33.3%	24.6%	
Combined	1.1%	8.0%	6.8%	1.0%	6.8%	5.5%	

Statistical uncertainty only

Preliminary results

Investigating discrepancy of $h \rightarrow cc/gg$ on $Zh \rightarrow qqh$ channel Need to compare LOI samples with new samples

$\Delta\sigma BR/\sigma BR$ at E_{cm} =350 GeV

Not changed from previous LCWS13 results.

Comparable with extrapolation and investigating difference between 250 and 350 GeV

E _{cm} =350 GeV		
Mh		
Lumi.		
ΔσBR/σBR		
vvh		
qqh		
eeh		
μμh		
Combined		

Statistical uncertainty only Need to update from 300 fb⁻¹ to nominal 330 fb⁻¹

Preliminary results Ilh channel have some template fitting problem, under investigation

Zh→vvh analysis procedure

Apply **forced two-jet clustering** after the LCFIPlus vertex tag

Zh→qqh @ 250 GeV (L=250 fb⁻¹)

Cut #	h->bb	h->cc	h->gg	h->others	2f	4f	1f_3f	aa_2f	ZH others
1	30,334	1,399	4,499	16,314	29,694,600	11,011,500	306,702,000	165,506,000	27,314
2	15,248	841	2,497	3,568	2,138,770	1,164,830	182,855,000	69,647,800	3,029
3	15,248	841	2,497	3,568	467,865	805,323	6,478	483	2,524
4	15,126	836	2,485	3,561	247,536	793,883	3,225	148	2,497
5	14,811	818	2,465	3,540	178,115	788,554	2,129	48	2,411
6	13,103	726	2,179	3,107	131,351	547,542	858	24	2,113
7	11,505	656	1,931	2,415	93,514	395,171	518	22	1,851
8	11,327	645	1,875	2,307	85,063	365,816	435	22	1,819
9	11,274	642	1,866	2,233	84,436	357,332	393	22	237
10	9,999	536	1,783	1,981	52,701	160,492	99	10	122
Eff.	33%	38%	40%	12%	1.8.E-03	1.5.E-02	3.2.E-07	6.0.E-08	4.5.E-03

