Higgs recoil mass study using ZH->qqH @ 250 GeV ILC

Tatsuhiko Tomita (Kyushu Univ.) Akiya Miyamoto (KEK), Taikan Suehara (Kyushu Univ.) & ILC physics working group

1

qqH channel

At lepton collider, we can measure Higgs without looking Higgs directly.

-> Model Independent search

In recoil mass study, leptonic channel such as Z -> e⁺e⁻, mu⁺mu⁻ has very good signal/background ratio. But, the branching ratio of Z -> leptonic is ~3.5% for each generation.

In contrast, the branching ratio of Z -> hadronic is \sim 70%. However, analysis is difficult due to a large amount of BG.

dataset and method (ILD full simulation)

- All DBD sample was used.
 - signal qqH , 250GeV 250fb⁻¹ (+0.8,-0.3),(-0.8+0.3) main background (ZZ/WW->hadronic, 2f_hadronic)
- Jet Clustering (with Durham method)

ISR finder

• For 2 fermion events, its efficiency is 90%, and its purity is around 80%.

The 38th general meeting of ILC physics subgroup 30/08/2014 : Tatsuhiko Tomita

Cuts so far (until AWLC14)

- BOX cut using 4 jet clustering (81:101) for ZZ, (70:90) for WW
- mass cut using 2 jet clustering (70:110) for semi lepton background
- mass selection using y value clustering within (76:106)
- jet pT > 20
- recoil mass cut (110:150)

The 38th general meeting of ILC physics subgroup 30/08/2014 : Tatsuhiko Tomita

The 38th general meeting of ILC physics subgroup 30/08/2014 : Tatsuhiko Tomita

cut table (AWLC14)

cut	qqH	4f_had	4f_other	2f_had	2f_other	other (aa,1f, so on)
no	100%	100%	100%	100%	100%	100%
box	89.9%	64.1%	52.8%	39.5%	83.9%	90.6%
z pt	78.4%	56.4%	33.6%	22.4%	29.4%	1.8%
y dijet mass	60.5%	51.4%	19.8%	14.5%	4.1%	0.4%
recoil	46.7%	15.8%	6.6%	2.5%	1.1%	0.2%

New cuts

- Sphericity > 0.2
- Thrust

major Thrust value > 0.3 , minor Thrust value > 0.1

Both cuts mainly target the 2 fermion background.
It can reduce 2 jet like event effectively.

major Thrust and Sphericity

• After applying cut at AWLC14, signal and 2 fermion background are well separated.

applying Sphericity and Thrust cut

 After Thrust and Sphericity cut, backgrounds reduced by about 1 of magnitude, and signals spoiled by 15%.

applying Sphericity and Thrust cut

Cut table with new cut

cuts	qqH(549K)	4f(9.3M)	2f(5.6M)	other(37.9M)
left	490,370	6,255,904	16,267,218	21,274,095
right	331,118	798,363	10,355,564	21,274,095
box	82.7%	83.9%	99.0%	99.9%
z pt	70.6%	60.9%	30.3%	2.4%
y dijet	54.7%	36.2%	10.0%	0.7%
recoil	43.1%	10.8%	2.7%	0.3%
sphericity	39.1%	6.7%	0.7%	0.2%
thrust	36.9%	5.2%	0.4%	0.05%

Summary and Prospects

summary

- Using Sphericity and Thrust cuts, 2 fermion background is well suppressed, but 4 fermion background is still alive.
- Significance is improved.
- If we can reduce 4 fermion background, there is still some room for improvement.
- Higgs decay mode must be affected by these cuts, so we need to categorize the events and to optimize cut for each mode.

prospects

- Use MVA? to reduce 4 fermion background
- Cut optimization using categories (no lepton, 1 lepton... etc)
- We need tau finder for categorize.

backup

strategy for resolving efficiency issue -1

To resolve efficiency inconsistent issue, we will categorize events using

- the number of jets (2, 3, 4, and ≥ 5)
- the number of isolated lepton (0, 1, and ≥ 2)

$$\begin{split} \mathrm{N}^{i} &= \sum_{n} \sigma_{\mathrm{tot}} \cdot \mathrm{BR}_{n} \cdot \theta_{n}^{i} \cdot \epsilon_{n}^{i} \\ \mathrm{n} &= (\mathrm{b}, \mathrm{W}, \mathrm{g}, \tau, ...) \\ \mathrm{N}^{i} \text{ is a number of events in category } i, \sigma_{\mathrm{tot}} \text{ is total cross section,} \\ \mathrm{BR}_{n} \text{ is Higgs decay branching ratio, } \theta_{n}^{i} \text{ is fraction in category } i, \\ \epsilon_{n}^{i} \text{ is cut efficiency for category } i. \end{split}$$

If the cut efficiency of each decay mode can be assumed to be the same as $\epsilon^{i}(=\bar{\epsilon}_{n}^{i}). \qquad \frac{\mathrm{N}^{i}}{\epsilon^{i}} = \sigma_{\mathrm{tot}} \sum_{n} \mathrm{BR}_{n} \cdot \theta_{n}^{i} \end{split}$

Then we can get

$$\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}} = \sigma_{\text{tot}} \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} = \sigma_{\text{tot}}$$

The 38th general meeting of ILC physics subgroup 30/08/2014 : Tatsuhiko Tomita

strategy for resolving efficiency issue -2

If the cut efficiency is not exactly the same,

we should consider the systematic effect caused by the difference.

$$\delta \epsilon_n^i = \epsilon_n^i - \epsilon^i$$

And the cross section is

$$\sigma_{\text{tot}} = \frac{\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}}}{1 + \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} \cdot \frac{\delta \epsilon_{n}^{i}}{\epsilon^{i}}}$$

We want to keep systematic uncertainty is less than 1 % to do model independent analysis.

If we don't assume any models, we should keep $\theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. If we can assume SM like higgs, we should keep $BR_n \cdot \theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. The 38th general meeting of ILC physics subgroup 30/08/2014 : Tatsuhiko Tomita