STUDY OF THE POSSIBILITY OF ATTACHING PIOS TO VERTICES AND AN EXTRA

Masakazu Kurata

08/30/2014

CONTENTS

- Constructing pi0 vertex finder
 - How to
 - Some results
 - Todos

o An extra

• Quick& poor study for the future study

CONSTRUCTING PIO VERTEX FINDER FOR VERTEX MASS IMPROVEMENT

3

INTRODUCTION

- For flavor tagging improvement
 - Vertex mass is the key to separate heavy/light flavor vertex
 - Many pi0s will escape from B/D vertex \rightarrow checked that using MC truth
 - Mass resolution will be degrade due to escaping neutrals
 - Is there possibility to recover pi0s which escape from vertices?

o Building π^0 finder – many components are necessary

- Gamma finder using shower profile in calorimeters
- π^{0} finder solving gamma pairing
- Vertex finder which vertex is the π^0 coming?

Last step is to attach pi0s to the vertex – find vertex of pi0s

- Very difficult to identify vertex depends on detector configuration
- Making the best of decay kinematics
- Using TMVA to find pi0 candidates from the vertex
- Comparing vertex mass distribution
- Sample: using qqHH@500GeV samples(so many tracks & pi0s in events)

KEY ISSUES

- Pi0s from (secondary, thirdary) vertices are very collinear to vertex direction
 - due to their small masses

- But, there are many pi0s which come from primary vertex & are accidentally collinear to the vertex direction! 5
 - Ref.) In ggHH events, $50 \sim 60$ pi0s will be produced!!

KEY ISSUES

- To avoid attaching too many pi0s:
 - Don't add pi0s in specific conditions →using vertex mass for MVA input

e.g.) no pi0s will come on D meson peak

- Making wrong mass shift effect smallest
 - Checking pi0s from large energy to small energy
 - Update vertex momentum when a pi0 candidate is found
 - \rightarrow add pi0 4-momentum to vertex momentum, and use it for next pi0 check

VERTEX FINDING

- Testing the vertex finding of pi0
- o Thirdary vertices with K+ π tracks in b-jets
- o Pi0 candidates are MVAoutput>0.83 \rightarrow needs optimization
- Unbelievable… D meson mass can be recovered well!!
- Works too good… Needs many check!

NEXT STEP

- There seems hope to attach pi0s for vertex mass improvement
- o But, the situation is very specific one
 - 2tracks(K+ π), thirdary vertices in b-jets
- Vertex mass should be the input variable of MVA
 - This variable will break the generality!
- If so, are classifiers necessary for all the vertex patterns?
 - That will be the best answer, but chaotic and hopeless!

o Can general and good classifier be constructed?

A CLUE

- o Different vertex patterns have different vertex mass patterns
- o e.g. 1) same num. of tracks with different particle patterns
 - K+π vs. π+π
 - From thirdary in bjet

o e.g. 2) different num. of tracks with same particle

- π+π vs. π+π+π
- From thirdary in bjet

INPUT VARIABLES TO CONSTRUCT A GENERAL CLASSIFIER

- How is the result when num. of particles are used as input variables?
 - Num. of e/ μ / π /K/p in the vertices using particle ID
 - But, those variables are not variables for background rejection, but are variables for vertex classification
 - → Do those variables work as variables for vertex classification in the MVA classifier?
- Num. of tracks in vertices must not be a variable
 - Don't need the bias from num. of tracks in vertices
 - weighting samples to erase such bias
- I have constructed the 3 types of MVA classifiers:
 - For thirdary vertices
 - For secondary vertices which have thirdary vertices
 - For secondary vertices which don't have thirdary
 - Using b jets

MVA – USING TMVA

- Input variables to be used
 - Secondary vertices which don't have thirdary

MVA OUTPUT

- Signal: pi0s from secondary vertices which don't have thirdary
- o Background: pi0s from primary(L_{decay}<0.3mm)</p>
- All the pi0s are assumed to come from secondary vertex
 - Correct gammas & pi0 momentum
- O Using Gradient BDT
- MVAcut>0.79(ntrk>=3) >0.69(ntrk==2)

VTX MASSES

- Vtx mass distributions for each vertex pattern(ntrk)
 - not so bad
 - 2track case has bias…

SOME PLOTS

- o Num. of pi0s to be attached \rightarrow determine MVAcut by it
- Where do pi0s really come from?
 - Many pi0s from primary are mis-attached to the vertices
 - Now, that is limited by detector configuration(can't determine exact gamma direction)
 - To some extent, an idea to catch gamma direction is necessary

TESTING FOR SOME TOPICS

- Attaching pi0s to c vertex using same classifier
 - So far, no strange behavior

• Now, trying to check ljet case…

GLANCE AT OTHER CASE

- o 2 vertices in bjet
 - Secondary vertex 4tracks case

Merging with thirdary vertex
Thirdary vertices allow all the patterns

CHECK IN MORE REALISTIC SITUATION

o Using gamma finder & pi0 finder

- Looking for gamma pair & constructing pi0 candidates
- Using those pi0s, try to attach them to the vertices
- Not yet contaminate neutral hadrons
- 2tracks, thirdary vertices in bjet

PROBLEMS AND TODO

- There seems hope for attaching pi0s to vertices
 - Vertex mass recovery is reasonable
 - Of course, many checks are necessary
 - More optimization is necessary
- Mis-attaching of pi0s are not so negligible
 - That is limited by detector configuration
 - To some extent, determination of exact gamma direction is necessary
- o Problems & Todo
 - Pi0 reconstruction eff. is so bad ightarrow so far, \sim 50%
 - Erase bias of vertex patterns
 - Contamination of neutral hadrons \rightarrow test in the most realistic situation
 - Compare bjet/cjet/ljet case precisely

• Finally, check the flavor tagging effs.!

QUICK STUDY FOR FLAVOR TAGGER IMPROVEMENT IN THE CASE OF **O**VTX

19

INTRODUCTION

- Most difficult situation for discriminating light/heavy jet is the case when there is no secondary vertex in the jet!
- In this case, only impact parameter is the variable which implies the existence of secondary vertex for flavor tagging
- Is there room to improve efficiency in such situation?
 - Especially, using particle ID!

o I'm looking at several variables in such case...

- Can I get a clue for the improvement?
- I'll show some points
- needs help and comments for future study

QUICK STUDY

• Kaon from D meson & c baryon

~30% jets – Kaons are daughters of
D meson & c baryon

• Focus on Kaon with largest signed impact parameter

- Kaon is tagged using particle ID
- Where does Kaon come from? \rightarrow check mother

MORE

• Looking at more plots

- Kaons from D meson are:
 - Larger impact parameter
 - More collinear to jet axis

