

SHINSHU UNIVERSITY Faculty of Science

Impact of two ECAL options

July, 22, 2014 T. Ogawa

Outline

- 1. Motivation
- 1. Z mass and Recoil mass
- 1. Recoil distribution with BG
- 1. ToyMC Estimation of Upper Limit
- 1. Summary

My Motivation - ILD ECAL

1. We have two ECAL candidates as ILD ECAL. 2. JER is also different.

- Big difference is the cost.

- The cost of SiECAL is more than twice larger.

- Most of people show us JER to compare performance.

- The difference of JER at 100 GeV jet is about 0.25% .

Tabl

ble $5.3.2$:	Cost	table of	the	electromagnetic	calorimeter.	

-	We should	know
CAL	how large	this difference effects

2. It is clear signal for new physics if we can confirm sizable invisible Higgs decay.

- Final state has only two jets
- We can compare physics performance of ECAL simply.
 - For detectors. Jet Energy Resolution is essential.
 - For physics. It is clear signal for new physics.

Simulation condition

1. Condition $E_{CM} = 250 \text{GeV} \text{ and } 350 \text{GeV}.$

Beam polarization P(e+,e-)= (-30%, +80%).

2. Process

All process is full reconstructed by using each ECAL.

- Signal : $e^+e^- \rightarrow ZH$, $Z \rightarrow qq$, $H \rightarrow Invisible (\rightarrow ZZ^* \rightarrow 4v ger)$.

- BackGround : ZZ semileptonic : one Z \rightarrow qq, the other Z \rightarrow ll,. WW semileptonic : one W \rightarrow qq, the other W \rightarrow lv $Zv_ev_{e'}$, Z \rightarrow qq Wev_{e'}, W \rightarrow qq ZH \rightarrow vvH ZH \rightarrow qqh

2. Cross section

$\sqrt{s}=250 \text{GeV}. \text{ L}=250 \text{fb}^{-2}$	¹ . P(e⁻	e ⁺)	=P(-0)	.8.+0.3)

Process	$\sigma(fb)$	$\sigma \cdot L$
$ZH \to qqH_{inv}$	21.2	5300
$ZH \rightarrow qqH (SM)$	212.2 - 21.2	53058 - 5300
$ZH \rightarrow vvH (SM)$	78.3	$1.9{ imes}10^4$
$ZZ \to qqII$	685.4	$1.7{ imes}10^{5}$
Zvv ightarrow qqvv	272.3	$6.8 imes 10^4$
$WW \to qqII$	10955	2.7×10^{6}
Wev o qqev	5910.1	1.5×10^{6}

Process	$\sigma(fb)$	$\sigma \cdot L$
$ZH \to qqH_{inv}$	13.7	3425
${\sf ZH} \to {\sf qqH} \ ({\sf SM})$	137.7 - 13.7	34425 - 3425
${\sf ZH} \to {\sf vvH}~({\sf SM})$	99.6	2.5×10^{4}
$ZZ \to qqII$	470.8	$1.2{ imes}10^{5}$
$Zvv \to qqvv$	356.4	8.9×10^{5}
$WW \to qqII$	8090.6	2.0×10^{6}
$Wev \to qqev$	4963.8	1.2×10^{6}

Signal: Z & H @vs=250GeV

1. Comparison only signal

- Si: σ with B-W ~ 9.31 GeV. (Mean with B-W 91.4GeV) Mass resolution ~ 10.2%.
- Sc: σ with B-W ~ 9.50 GeV. (Mean with B-W 90.9GeV) Mass resolution ~ 10.4%.

Degradation of resolution is 2%

- Si: σ with GPET ~ 4.86 GeV. (Mean 126.1GeV) Mass resolution ~ 3.9%.

- Sc: σ with GPET ~ 4.79 GeV. (Mean 126.9GeV) Mass resolution ~ 3.8%.

Degradation of resolution is ?%

120

Signal: Z & H $@\sqrt{s=350GeV}$

1. Comparison only signal

- Si: σ with B-W ~ 9.23 GeV. (Mean with B-W 92.1GeV) Mass resolution ~ 10.0%.
- Sc: σ with B-W ~ 9.78 GeV. (Mean with B-W 91.6GeV) Mass resolution ~ 10.7%.

Degradation of resolution is 7%

- Si: σ with GPET ~ 10.8 GeV. (Mean 125.6GeV) Mass resolution ~ 8.6%.

- Sc: σ with GPET ~ 10.1 GeV. (Mean 127.7GeV) Mass resolution ~ 7.9%.

Degradation of resolution is ?%

Cut variables

1. Cut variables to suppress BG

get mu-pair or not == 1 100<zenergy<144 87<zmass<96 50<ptdilep<115 0.94<fabs(costhetamm) 0.94<fabs(costhetamp) -0.95<costhetamp<-0.3 0.94<fabs(costhetaZ 3.0<acoplanarity 1.8<acollinearity<2.8 120<visenergy<280

Same cut applied for both ECALs

After applied above cut

Using remaining events + variable" recoil",

Do TMVA training

-0.07~-0.05<MVAoutput

Change this parameter to set same S/N ratio for each model.

250GeV

CAL options

mpact of two E

Cut variables

- I f I apply more tight cut by using BDT parameter, it will be more difficult to fit BG with well known function.

- For now I do not use BDT parameter.

Recoil Dist with BG $@\sqrt{s=250GeV}$

ww sl

 $\overline{\#}\,600\overline{k}$

54.815

50.152

3.293

2.749

2.475

2.162

2.039

1.311

1.132

1.132

#26003

10954.8

wev sl

#60k

zvv sl

#60k

272.3

99.818

97.715

64.043

57.921

53.809

50.189

47.691

38.116

33.984

33.954

#16193 #19294

1. Recoil mass distribution.

cut&process	qqh_inv	_zh_qqh	_zh_vvh	_zz_sl
# Raw MCdata	#25k	#25k	#25k	#60k
# xsection	21.2	212.2	78.3	685.4
lepveto	99.796	92.100	92.251	79.999
logy23	98.668	60.624	82.319	73.434
zenergy	94.540	0.364	17.990	31.943
zmass	89.148	0.236	9.616	28.023
ptdijet	87.240	0.224	9.107	25.335
costhetaj0	82.084	0.216	8.670	23.141
costhetaj1	75.692	0.196	8.169	21.899
costhetaj01	74.040	0.192	8.045	15.262
costhetaŹ	70.524	0.180	7.600	13.366
visenergy recoil 70.456	70.464 0.1807.384	0.180 19.45028.34	7.420 0.950	13.352
#Remaining	#3734	#95	#1445	#16193

Nsig: 3734 Nbg: 64068 SN: 0.06

qqh_inv	zh_qql	h_zh_vvł	n_zz_sl	_zvv_sl	_ww_sl	_wev_sl
#25k	$\overline{#}25k^{11}$	#25k	#60k	#60k	#600k	#60k
21.2	212.2	78.3	685.4	272.3	10954.8	5910.1
99.808	92.004	92.180	79.975	99.825	54.554	30.587
99.332	57.436	84.886	74.090	98.752	49.978	28.855
94.928	0.380	19.849	34.610	68.209	3.735	0.233
89.480	0.228	10.299	30.525	61.728	3.130	0.162
87.588	0.220	9.762	27.707	57.239	2.813	0.152
82.656	0.208	9.330	25.347	53.408	2.449	0.132
76.164	0.188	8.697	23.987	50.829	2.305	0.122
74.536	0.188	8.557	16.603	40.184	1.438	0.083
71.136	0.172	8.072	14.543	35.782	1.238	0.075
71.036	0.172	7.924	14.525	35.732	1.237	0.075
#3764	#91	#1544	#17661	#20447	#27892	#1083
	qqh_inv # 25k 21.2 99.808 99.332 94.928 89.480 87.588 82.656 76.164 74.536 71.136 71.036 # 3764	qqh_inv _zh_qql # 25k # 25k 21.2 212.2 99.808 92.004 99.332 57.436 94.928 0.380 89.480 0.228 87.588 0.220 82.656 0.208 76.164 0.188 74.536 0.188 74.536 0.188 71.136 0.172 71.036 0.172 # 3764 # 91	qqh_inv_zh_qqh_zh_vvh#25k#25k#25k#25k#25k#25k21.278.399.80892.00499.33257.43684.88694.9280.38019.84989.4800.22810.29987.5880.2209.76282.6560.2089.33076.1640.1888.69774.5360.1888.55771.1360.1727.924#3764#91#1544	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Nsig: 3764 Nbg: 68721 SN: 0.05

120

130

140

110

150

M_{recoil} [GeV]

Recoil Dist with BG $@\sqrt{s=350GeV}$

1. Recoil mass distribution.

R
x
lep
log
zer
zm
ptd
cos
cos
COS
cos
vis
R

cut&process	qqh_inv	/_zh_qqł	n_zh_vvh	ı_zz_sl	_zvv_sl	_ww_sl
# Raw MCdata	#25k	$\overline{#}25k$	$\overline{#}25k$	#60k	#60k	#600k
# xsection	13.7	137.7	99.6	470.8	356.4	8090.6
lepveto	99.872	91.948	92.629	80.532	99.828	59.113
logy23	98.824	72.864	85.337	77.529	98.693	58.477
zenergy	94.620	0.796	72.351	49.531	73.375	11.512
zmass	86.396	0.164	12.470	42.225	65.689	6.073
ptdijet	84.816	0.164	11.968	38.892	62.481	5.144
costhetaj0	80.788	0.160	11.281	32.630	55.653	3.813
costhetaj1	76.292	0.156	10.528	30.575	52.471	3.519
costhetaj01	54.480	0.112	8.811	17.946	39.118	1.558
costhetaŻ	53.316	0.108	8.217	14.937	33.434	1.201
visenergy	53.204	0.108	7.807	14.904	33.354	1.199
#Remaining	#2193	#38	#1123	#11504	#15028	#12331

Nsig: 2193 Nbg: 41880 SN: 0.05

qqh_inv	_zh_qqh	_zh_vvh	_zz_sl	_zvv_sl	_ww_sl	_wev_sl
#25k	$\overline{#}25k$	#25k	#60k	#60k	#600k	#60k
13.7	137.7	99.6	470.8	356.4	8090.6	4963.8
99.836	92.008	92.302	80.508	99.832	58.883	40.100
99.524	79.696	86.932	78.832	99.267	58.309	39.724
95.324	0.884	74.915	50.503	73.580	12.299	3.537
86.856	0.176	13.659	42.685	65.706	6.273	1.939
85.444	0.176	13.053	39.355	62.449	5.289	1.701
81.400	0.168	12.277	33.163	55.646	3.967	1.196
76.920	0.160	11.351	31.060	52.503	3.652	1.019
55.136	0.116	9.334	18.292	39.194	1.626	0.484
53.964	0.112	8.709	15.247	33.492	1.250	0.390
53.824	0.112	8.183	15.182	33.376	1.247	0.387
#2234	#40	# 1158	#13344	#15709	#14114	#1969
	qqh_inv # 25k 13.7 99.836 99.524 95.324 86.856 85.444 81.400 76.920 55.136 53.964 53.824 # 2234	qqh_inv _zh_qqh # 25k # 25k 13.7 137.7 99.836 92.008 99.524 79.696 95.324 0.884 86.856 0.176 85.444 0.176 81.400 0.168 76.920 0.160 55.136 0.116 53.964 0.112 53.824 0.112 # 2234 # 40	qqh_inv _zh_qqh_zh_vvh# 25k# 25k# 25k# 25k13.7137.799.699.83692.00892.52479.69686.93295.3240.88474.91586.8560.17613.65985.4440.17613.05381.4000.16812.27776.9200.16011.35155.1360.1169.33453.9640.1128.70953.8240.1128.183# 2234# 40	qqh_inv_zh_qqh_zh_vvh_zz_sl#25k#25k#25k#25k#60k13.7137.799.6470.899.83692.00899.52479.69686.93278.83295.3240.88474.91550.50386.8560.17613.65942.68585.4440.17613.05339.35581.4000.16812.27733.16376.9200.16011.35131.06055.1360.1169.33418.29253.9640.1128.18315.182#2234#40#1158#13344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Nsig: 2234 Nbg: 46337 SN: 0.05

Impact of two ECAL options

T.Ogawa (SOKEN)

Shape of fitting function

1. $\sqrt{s}=250$ GeV (250fb⁻¹).

Upper Limit of BR(H⇒invisible)

Summary

1. I analyzed invisible Higgs decay to compare performance of ECALs

- The difference of JER at 100 GeV jet is about 0.25% .

2. By the current result is that

If we reduce the cost of ECAL more than 50%, (because our default is Si) the sensitivity of invisible higgs decay will get worse 7.5% at 250GeV (250fb⁻¹), 3.4% at 350GeV (350fb⁻¹)

- 3. Need to investigate why shift occurs (higgs recoil mass in case of ScECAL).
- 3. Need to investigate bias of ToyMC (in case of ScECAL).

- 3. Need to optimize cut variables.
 - (Ishikawa-san)"Left" polarization : BF (H→invisible) < 0.95% ? @ 95% CL ?