${ m H} ightarrow \gamma \gamma$: Effect on γ Energy Resolution over Significance

C. Calancha calancha@post.kek.jp

August 30, 2014

Status/Plan

Status: Work in progress

- Scope: target is vvH (H $ightarrow \gamma \gamma$) at 500 GeV. Main background only (vvaa).
- Procedure is clear but study very preliminary yet.
- Still developing code.

Procedure

- Assuming several photon resolutions worst that the observed one.
- For each resolution the significance of the signal over the main background is obtained.
 - Same cut flow as showed in LCWS13.
 - Signal window needs reoptimisation (peak gets broader).
 - BDT maybe too.

Plan

- Show this study in the incomming ILD meeting.
- Cover Ogawa san calorimeter study.

- Fo is observed single γ E res.
- Generate new γ E (Er) using gaussian.
- Fc is the γ E resolution with those Er.
- Apply same selection cut and extract significance: signal / sqrt(signal + back)

Observed γ E res

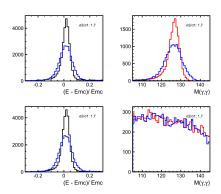
```
Fo = ( E - Emc ) / Emc
```

Extracted Er

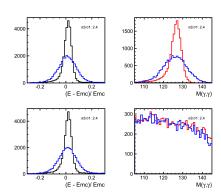
```
Fr = (Er - E) / E

frand = Fr(RAND)

Er = frand * E + E
```


New γ E resolution

```
Fc = (Er - Emc) / Emc
```


What we expect

- Expect the background not very sensitive to the E res.
- In the other hand, signal will be (peak get broader).
- Broader peak \to broader signal window \to more background \to significance get worse.

Examples

- E res sigma 1.7 times the observed value.
- vvH(up) vvaa (down)

- E res sigma 2.4 times the observed value.
- vvH(up) vvaa (down)

BackUp Slides