Computing Resources for ILD

a report on work in progress

Akiya Miyamoto, KEK

with a help by Vincent, Mark, Junping, Frank

9 September 2014 ILD meeting @ Oshu City

Introduction

- Computing design and cost are not included in ILC TDR, because
 - difficult to estimate a reliable estimate now
 - development of computing technology in > 10 years will be enormous
- But there requests to evaluate the cost and the human power needed for ILC computing.
 - "HL-LHC needs a huge computing resource. How about ILC ?"
 - Funding agency would like to know the total cost.
 - → First discussion at AWLC14 Sim/Rec session.
 - → Several suggestions for improvements
 - LCC infrastructure group's request from Yasuhiro
 - Ad hoc meeting within ILD in August with Vincent, Frank, Junping, Mark, Akiya

A model of ILD data processing

Type of Data

Raw Data(RD): train-based data. 3 Copies at ILC Site, US, EU Calibration Data (CD): - Data for calibration & alignments Online Processed Data (OPD): - Event based data after filtering - Consists of raw data objects and reconstructed objects - Replicated to GRID sites for sub-sequent processing Fast Physics Data (FPD): - DST of important physics events Offline Reconstructed Data (ORD): - Re-processed OPD. Produced after a few months later with new constants. Same events as OPD. DST: - DST from OPD or ORD. Several DSTs may be produced depending on physics MC data:

- Monte Calro data

Bases of estimation: ILD raw data size in TDR (@500 GeV)

	Channels	Beam induced	Noise	Data volume	
Sub-detector	$[10^6]$	[Hits/BX]	[Hits/BX]	per train [MB]	
VTX (CPS)	300	1700	1.2	< 100	
VTX (FPCCD)	4200	1700	1200	135	
ТРС	2	216	2000	12	- VAD. IUUIVID
FTD	1	260	0.3	2	reduced to Γ_{0}^{0} – CMD
SIT	1	11	0.3	6	
SET	5	1		1	Others < 401VIB
ETD	4			7	
SiECAL	100	444	29	3	
ScECAL	10	44	40		
AHCAL	8	18000	640	1	
SDHCAL	70	28000	70		
MUON	0.1		8	≤ 1	
LumiCal	0.2			4	
BeamCal	0.04			126**	

raw data size per train estimated @ 500 GeV

Total data size : < 150MB/train = 750MB/sec ~ 6Gbps (bit per sec)

 $^{\sim}$ 7.5PB/1 year ($10^{7}~\text{sec}$) for ILD

Energy dependence of pair hits

- The number of SimTracker/SimCalorimeter hits/BX were obtained by reading 100 BX of pair simulation files.
- Many Muon hits seems inconsistent with the data size estimation in TDR.
- The ratio relative to 500 GeV was used to estimate the data size at different beam energy

		$\mathrm{Hits}/\mathrm{BX}$	Relative to 5			GeV
Energy	250	350	500	250	350	500
VXD	807.8	1047.2	1889.8	0.427	0.554	1
TPC	1273.9	1984.5	4048.0	0.315	0.490	1
FTD	84.4	117.4	250.9	0.337	0.468	1
SIT	10.5	14.4	17.6	0.597	0.816	1
SET	0.3	0.8	0.9	0.297	0.824	1
SiECAL	99.0	160.6	321.6	0.308	0.499	1
AHCAL	3419.0	5782.3	18145.6	0.188	0.319	1
Muon	59416.6	61949.2	145783.9	0.408	0.425	1
LumiCAL	104.8	133.6	323.8	0.324	0.412	1
BCAL	172922.7	275519.2	703877.8	0.246	0.391	1
LHCAL	199.2	337.2	1153.1	0.173	0.292	1

Energy dependence of pair hits - 2

Data size / Train 500 GeV

Beam induced hits are scaled.

		latas	size	Beam indu	iced	Noise	byt	e/Hits	datas	size(MB/	Train)	
	M	$\rm B/tr$	ain	[Hits/]	BX]	[Hits/BX]			250	1	350	
VXD		1	135	1	700	1200		35.13	89.7	,	99.7	
TPC			12		216	2000		4.09	11.2) e	11.4	
FTD			2		260	0.3		5.80	0.7		0.9	
SIT			6		11	0.3		400.73	3.6	,	4.9	
SET			1		1	0			0.3	•	0.8	
ETD			7						0.0	1	0.0	
SiECAL			3		444	29		4.79	1.1		1.6	
AHCAL			1	18	000	640		0.04	0.2) e	0.3	
Muon			1		0	8			1.0	1	1.0	
LumiCAL			4		1	0			1.3	•	1.6	
BCAL			6.3		1	0			1.5	i	2.5	
LHCAL												
Total		17	8.3	20	634	3877.6			110.6	1	124.9	
Data sizo /	Va	or	CM	[Energy		GeV		250		3 50	500	0
			Pul	se rate		Ntrain/a	sec	5		5	5	
			Tot	al data s	ize	MB/Tra	nin	110.6	3	124.9	173	8.3
			Dat	ta size/se	ec	MB/sec		553.0)7	624.26	89	1.50
			Dat	a size/ye	ear	$PB/10^{7}$	sec	5.53		6.24	8.9)2

Energy dependence of MC events

Procedure: 50~100 events of all type of Stdhep events were simulated by Mokka and estimated CPU time and data size.

250GeV	$250 \text{GeV}/250 \text{fb}^{-1}, \text{Pol}(\text{e-:-}80\%, \text{e+:+}30\%)$							
Process	k events	CPU days	Data size(GB)					
1f	365541.4	36186.5	25259.6					
2f	29055.9	5595.8	13267.6					
3f	23087.4	2592.3	3405.4					
4f	10213.4	2373.2	8614.5					
aa_2f	165274.4	9879.9	13988.3					
aa_minj	1818.1	435.1	741.5					
ffh	79.9	22.4	100.7					
Total	595070.4	57085.1	65377.6					

2380kev/1fb-1

	80%, e+:+30%)	00fb-1,Pol(e-:-8	$500 \mathrm{GeV}/50$	500GeV
	Data size(GB)	CPU days	k events	Process
	48775.9	104310.4	446288.2	1f
Current	4527.7	2313.4	6599.5	2f
Summ	13434.6	16202.0	66730.9	3f
	5241.4	2824.9	8111.7	4f
kE	28.4	18.2	35.8	$5\mathrm{f}$
CI	312.8	111.5	196.1	6f
D	66076.9	50391.6	669274.0	aa_2f
note	29.8	22.9	52.4	aa_4f
- hic	10309.1	5990.6	21127.6	aa_minj
	4.5	2.3	4.5	ffh
	148741.2	182187.8	1218420.9	Total

	350GeV	$350 \mathrm{GeV}/350$	$350 \text{fb}^{-1}, \text{Pol}(\text{e-:-}80\%, \text{e+:+}30\%)$				
	Process	k events	CPU days	Data size(GB)			
	1f	355028.8	52965.0	33423.1			
	2f	18028.8	4693.1	9080.4			
	3f		5045.6	5727.0			
	4f	7990.8	2386.4	6100.7			
	6f	39.4	16.8	58.3			
	aa_2f	256407.9	16480.1	22809.6			
	aa_4f	14.9	4.2	7.9			
	aa_minj	4765.6	1322.1	2174.7			
	ffh	65.4	22.0	74.6			
	$mixed_{-}5f$	10.3	3.3	7.6			
	mixed_6f		0.6	1.6			
	mixed_aa_4f		4.2	7.0			
	mixed_aa_minijet	3.4	0.9	2.0			
	tt	206.8	88.2	342.1			
	Total	674613.9	83032.5	79816.6			
immary							
Ener	gy	250) 35	500			
kEvent	s/fb-1	2380.3	1927	.5 2436.8			
CPU da	ays/fb-1	228.3	3 237	.2 364.4			
Data si	ze (GB)/fb-1	261.5	5 228	.0 297.5			
note:							
- high cross section events, such as bhabha							
and or	and not includ						
	γμμ ποι πισιάα	cu.					

- Marlin Rec. is not take into account yet.

Total storage and CPU : Assumptions for estimation

- Online Processed Data (OPD) = RDx0.02x2.03
 - 0.02: #signal and ECAL bhabha events <1% of BX
 - 2.03: from MC, (rec+dst)/sim ~ 2.03
- Offline Reconstructed Data = OPDx1.5 (~ RDx0.02x3)
- MC data :
 - x10 real data statistics
 - sim+rec+dst ~ 2.03xsim
 - x2 for bhabha+eemumu+...
- Data replication
 - Raw data : 3 copies at ILC site, EU and USA
 - OPD, ORD, MC DST at 10 major GRID sites
- CPU Time
 - MC data:
 - CPU time for 10 times more statistics than Raw Data
 - Another factor 2 for bhabha, eemumu, ...
 - Marline CPU time = 0.2 x Mokka CPU time
 - Online Process Data:
 - CPU time/event = 0.2 x Mokka CPU time
 - Nb. of events to be processed = 2xNb. of signal (2 for Bhabha, etc)
 - Offline Process Data:
 - Same as OPD
 - Computing efficiency: 90%

Summary of data size and CPU of ~1 year(10⁷sec) of running

	EM Energy	250	350	500	GeV	preliminarv
	Int Lumi for 10^7	75	100	180	fb^-1	
	Nb. of Signal + Bhabha / BX	0.53%	0.47%	0.82%	%	
	Data size (for one set)					
	Raw Data (RD)	5.5	6.2	8.9	PB	
	Online Processed Data (OPD)	0.2	0.3	0.4	PB	
	Offline Reconstructed Data (ORD)	0.3	0.4	0.5	PB	
	MC Data (Sim+REC+DST)	0.8	0.9	2.2	РВ	
	Sub Total	6.9	7.8	12.0	PB	
Ī	Data size (incl. replication)					
	Raw Data (RD)	16.5	18.6	26.7	РВ	
ſ	Online Processed Data (OPD)	2.2	2.5	3.6	РВ	
ſ	Offline Reconstructed Data (ORD)	3.3	3.8	5.4	РВ	
	MC Data	0.9	1.1	2.5	PB	
	Sub Total	23.0	26.0	38.2	PB	
Total Data size		22.2	25.0	36.1	PB	
CPU						
	MC CPU days for 10xLumi	410.9	569.3	1574.2	CPU daysx1k core	
	Online Process Data(*)	6.8	9.5	26.2	CPU daysx1k core	
ſ	Offline Process Data	6.8	9.5	26.2	CPU daysx1k core	
ľ	Total CPU days	417.8	578.8	1600.4	CPU daysx1k core	
	# of cores to process in 90 days	5.2	7.1	19.8	k cores	9

Evolution of storage capacity based on a sample running scenario

Summary

- A preliminary result on computing resources necessary for ILD is presented.
- Numbers used for the estimation are very preliminary and subject to change Needs to be improved or confirmed. For examples,
 - Efficiency of non-signal event filtering
 - CPU time of online data processing, incl. calibration, alignment, filtering, ...
 - Consistency of raw data size in TDR and pair background simulation
 - How many MC events do we produce ?
 - How many reprocessing do we need ?
 - size of disk storage ?
 - resources during the construction ?
 - ... more
- Independent estimation by SiD will help
- Comments/suggestions/thoughts are highly welcomed.

SiD's task(s)

- (From what I understand) the main purpose of this effort is to understand the spending profile for (all aspects of) the ILC campus
- ILD also has prepared man power estimates
 - SiD should come up with their own estimates, then we compare
- Some things will be shared with ILD, others will be taken care of the detector collaborations
 - We have some catching up to do before we can compare numbers with ILD
 - There are a few things we can / should discuss together, but we also need to put in some work to understand the details, e.g. event filtering
- Akiya did basically all of this by himself we should try to split up tasks to catch up faster