$h \rightarrow \tau^+ \tau^-$ BR Study Status

Shin-ichi Kawada Hiroshima University

Status

- Try to start analysis with proper tau polarization sample
- Before that, found a bug in tau finder for qqh...
 - $\mbox{ Particle satisfies } M_{\rm combine} < 2 \mbox{ GeV \&\&} \\ \cos \theta > 0.98 \mbox{ will be combined, but it was} \\ \theta < 0.98 \mbox{ rad...}$
- I need to re-evaluate with TDR sample before new sample. <--- Today's topic
- JPS meeting @ Saga (Sep./18 21) – my talk: Sep./19

Previous results

- @ 250 GeV qqh (TDR sample)
 - Cut-based: $22.6\sigma \leftrightarrow 4.4\%$
 - TMVA: $23.5\sigma \leftrightarrow 4.3\%$

Now I'm working on 250 GeV qqh (TDR sample) with fixed tau finder

 $- M_{\text{combine}} < 2 \text{ GeV } \& \cos \theta > 0.98$

Reconstruction

- 1. Tau finder: get taus
- 2. Collinear approx.: get tau pair mass (Higgs mass)
- 3. Durham 2-jet clustering: get Z boson

 didn't use kT clustering because the number of overlaid process is small

Cut-based analysisBefore bug fixAfter bug fix

```
Cut 0: # of q jets = 2, # of \tau^+(\tau^-) = 1,
       # of tracks >= 9, M_{col} > 0, E_{col} > 0
Cut 1: thrust < 0.96
Cut 2: |\cos \theta_{\rm miss}| < 0.96
Cut 3: M_Z(M_{aa}) > 80
Cut 4: 95 < E_Z(E_{aa}) < 125
Cut 5: M_{\tau\tau} < 110
Cut 6: E_{\tau\tau} < 125
Cut 7: \cos \theta_{\tau \tau} < -0.55
Cut 8: 100 < M_{col} < 190
Cut 9: E_{col} < 210
Cut 10: M_{\rm recoil} > 117
```

Cut 0: # of q jets = 2, # of $\tau^+(\tau^-) = 1$, # of tracks >= 9, $M_{col} > 0$, $E_{col} > 0$ Cut 1: $|\cos \theta_{\rm miss}| < 0.98$ Cut 2: $75 < M_Z(M_{aa}) < 120$ Cut 3: 90 < $E_Z(E_{aa})$ < 120 Cut 4: $M_{\tau\tau} < 115$ Cut 5: $E_{\tau\tau} < 125$ Cut 6: $\cos \theta_{\tau \tau} < -0.52$ Cut 7: $100 < M_{col} < 175$ Cut 8: $E_{col} < 200$ Cut 9: $\log_{10} |d_0 \operatorname{sig}(\tau^+)|$ $+\log_{10} |d_0 \operatorname{sig}(\tau^-)| > -0.8$ Cut 10: $\log_{10} |z_0 \operatorname{sig}(\tau^+)|$ $+\log_{10} |z_0 \operatorname{sig}(\tau^-)| > -0.3$ Cut 11: $M_{\rm recoil} > 115$

Cut table

	$q\overline{q}h$	$q\overline{q}h$	$\overline{\nu}\overline{\nu}h$	2f	4f	1f_3f	aa_2f	sig.
	$h\to\tau\tau$	$h \not\rightarrow \tau \tau$	$\ell\ell h$					
none	3357	4.920e4	2.730e4	$2.863 e^{-7}$	1.021 e7	2.305e8	1.634e8	0.161
pre-sel	1235	458.7	3135	4.44e4	2.067 e5	4.382e4	1.528e5	1.84
thrust	1234	458.7	3135	3.737 e4	2.019e5	3.875e4	1.505e5	1.88
$\theta_{\rm miss}$	1191	414.7	2828	1.116e4	1.737e5	1829	2.479e4	2.56
M_Z	1069	389.7	2711	6329	6.326e4	652.1	161.8	3.92
E_Z	1001	165.6	541.2	196.4	2.376e4	105.5	0	6.23
$M_{\tau\tau}$	967.1	160.3	527.2	107.8	2.108e4	98.13	0	6.38
$E_{\tau\tau}$	964.0	160.3	525.4	83.12	1.525e4	91.38	0	7.38
$\theta_{ au au}$	947.1	22.85	242.9	38.80	3295	13.05	0	14.0
$M_{\rm col}$	844.1	7.164	62.83	1.635	1021	1.800	0	19.2
$E_{\rm col}$	843.6	7.018	61.79	1.635	982.0	1.800	0	19.4
$M_{\rm recoil}$	800.3	5.952	39.78	0.088	411.9	0.900	0	22.6
	$a\overline{a}h$	aāh	$\nu \overline{\nu} h$	2f	4f	1f 3f	aa 2f	sig.
	$h \to \tau \tau$	$h \not\rightarrow \tau \tau$	$\ell\ell h$			11_01		5-8.
None	3357	4.920e4	2.730e4	2.863 e7	1.021e7	2.305e8	1.634e8	0.161
pre-sel	1358	435.1	3366	2.924e4	1.891e5	3.053e4	9.898e4	2.29
$\theta_{\rm miss}$	1337	412.3	3164	1.265e4	1.706e5	2336	1.796e4	2.93
M_Z	1227	219.1	1246	1732	$5.783\mathrm{e}4$	618.4	40.97	4.89
E_Z	1160	181.9	397.7	264.5	1.702e4	190.5	20.99	8.36
$M_{\tau\tau}$	1145	176.1	393.0	96.27	1.428e4	138.4	20.99	8.98
$E_{\tau\tau}$	1132	176.1	391.9	57.55	1.087 e4	130.2	20.99	10.0
$\theta_{\tau\tau}$	1123	28.84	204.7	25.00	3449	40.48	9.992	16.1
$M_{\rm col}$	979.2	7.310	45.40	4.731	978.8	3.855	0	21.8
$E_{\rm col}$	979.0	7.138	44.80	4.731	950.2	3.855	0	21.9
d_0 sig	966.6	5.917	36.55	4.731	829.8	3.855	0	22.5
z_0 sig	935.3	3.518	22.32	4.731	605.7	3.104	0	23.6
Mrecoil	918.3	3.226	20.18	3.008	418.9	1.550	0	24.9

Before bug fix

After bug fix

Cut-based results

- Before bug fix 22.6σ
- After bug fix 24.9 σ : relatively 10% improved!
- At the pre-selection level: number of signals increased ~10%

TMVA analysis

- 17 parameters
 - # of tracks $M_{vis} P_t$ thrust $\cos \theta_{miss} M_{qq}(M_Z) = E_{qq}(E_Z) \cos \theta_{qq} M_{\tau\tau} E_{\tau\tau} \cos \theta_{\tau\tau} \cos \theta_{acop} = \log_{10}|d_0 \operatorname{sig}(\tau^+)| + \log_{10}|d_0 \operatorname{sig}(\tau^-)| = \log_{10}|z_0 \operatorname{sig}(\tau^+)| + \log_{10}|z_0 \operatorname{sig}(\tau^-)| = M_{col} E_{col} = M_{recoil}$
 - Applied following cuts to suppress trivial background: $90 < E_{vis} < 285, 85 < M_{vis} < 285, P_t > 50$, thrust < 0.97, $40 < E_Z(E_{qq}) < 205, 15 < E_Z(E_{qq}) < 200, E_{\tau\tau} < 160, M_{\tau\tau} < 145$

TMVA results (BDTG)

Cut efficiencies and optimal cut value

TMVA results

- Before bug fix 23.5σ
- After bug fix 25.2σ : relatively 7% improved!
- Relatively 1% improved from bug-fixed cutbased analysis.

Summary

- Tau finder now works much better!
- Analyzed with TDR samples @ 250 GeV qqh – Cut-based: $24.9\sigma \leftrightarrow 4.0(4.02)\%$ – TMVA: $25.2\sigma \leftrightarrow 4.0(3.96)\%$

 Plan: try to analyze with new samples and get results before JPS meeting <--- now working on...