CR1: Insert Dogleg

K. Yokoya

CMB mtg 2014.9.25

Insertion of Dogleg : Motivation

- In TDR, after passing the undulator, the electron beam is separated from the photons by a dogleg and goes to the IP
- Hence, the BDS line is horizontally shifted from the extension of the linac line by 2 m .
- This dogleg causes 8% increase of the horizontal normalized emittance (w.r.t. the DR emittance) at $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{TeV}(\mathrm{CM} 1 \mathrm{TeV})$ (estimated by K.Kubo)
- Emittance increase is proportional $\mathrm{E}_{\mathrm{e}}{ }^{6}$. \rightarrow About 90% at $\mathrm{E}_{\mathrm{e}}=0.75 \mathrm{TeV}$
- This dogleg can be a bottle neck for going to $>1 \mathrm{TeV}$ CM in the far future by whatever technology.
- It can be fatal, in particular, if we aim at smaller horizontal emittance.

1st Solution

- Insert a backward dogleg of $\sim 400 \mathrm{~m}$ long in or before BDS such that BDS comes on the linac line

- For $\mathrm{ECM}>1 \mathrm{TeV}$ in the far future the beam goes straight from the linac to BDS, by moving the positron system somewhere.
- This change does not affect the path length issue
- Cost:
- tunnel ~10M\$
- beamline ~20M\$ (magnet, power supply, vacuum)

2nd Solution

- Insert a dogleg of $\sim 400 \mathrm{~m}$ long before the undulator
- An extra beamline, depicted by the dashed line, is needed for $10 \mathrm{~Hz}(5+5)$, together with a 5 Hz pulsed magnet

- Simple if we have to start with e-driven positron source
- This change does not affect the path length issue
- Cost: a bit more expensive due to the dashed line

3rd Solution

- BDS in TDR has another dogleg (1.66m) to create dispersion
- Do not know if the tunnel from e-linac to IP is straight or not, to cover $2+1.66=3.66 \mathrm{~m}$
- 3rd solution:

1. Invert the sign of bend in BDS dogleg for both e+ \& e-- This will cause sign change of dispersion. Is this OK?
2. Insert $\sim 400 \mathrm{~m}$ dogleg in positron side, symmetrically with the dogleg after the undulator in electron side

- This will make the IP only 0.34 m off the extension line of each linac.
- Presumably the tunnel can be straight from the linac all the way down to IP.
- 1.66 m might be smaller in $>1 \mathrm{TeV}$ design but this will change the IP only a small amount transversely.

However,

- The $3^{\text {rd }}$ solution clearly violates the path length constraint with $\mathrm{n}=9$
L1+L2+L3-L4 = n x C
- In the present design L.H.S. is longer by $\sim 300 \mathrm{~m}$ if $\mathrm{n}=9$

- There is a possibility to shorten BDS by $100 \sim 200 \mathrm{~m}$?
- The discrepancy would be $\sim 1100 \mathrm{~m}$ $\left(300+2^{*} 400\right)$ if the 3 rd solution is adopted
On the other hand
- There are some reasons for longer linacs
- Many physicists would like 550 GeV rather than 500 GeV
- $4 x$ higher crosssection at ttbarH
- Gradient margin to guarantee the maximum energy by 100%
- Maximum energy in the present design can be, e.g., 475 GeV if 5% gradient loss \rightarrow completely kill ttbarH

Advantage of the 3rd solution when

- If it be decided to adopt longer linacs (or at least longer tunnels with empty space) in LCC/LCB level, $\mathrm{n}=10$ would be inevitable.
- Then, how about doing this? (This not a part of this Change Request)
- Adopt $\mathrm{n}=10 \rightarrow$ Lengthen positron arm by $(3.2 \mathrm{~km}-0.3 \mathrm{~km}) / 2=$ 1.45 km (but no change in DR circumference and BDS length)
- from which use 0.4 km for the new dogleg.
- Use remaining 1.05 km as the empty space for positron linac extension
- Lengthen electron arm by 1.05 km as the empty space for electron linac extension
- $1.05+1.05=2.1 \mathrm{~km}$ (corresponds to $\sim 50 \mathrm{GeV}$) can later be filled with linac modules in case the maximum energy not sufficient (due to either of the two reasons)
- In this case the cost of the new dogleg is $\sim 20 \mathrm{M}$ (tunnel must anyway be lengthened)
- This CR does not contain complex technical issues.
- It is a policy issue.
- Do you pay for 20-30M\$ as totally-uncertain, farfuture investment?

