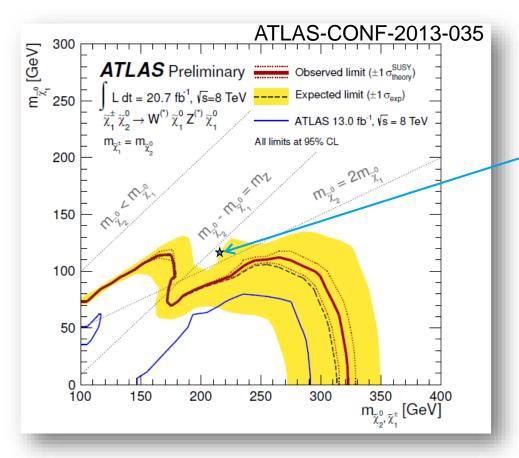
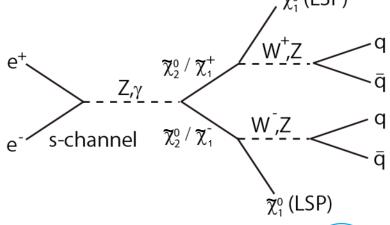
"Point 5": LOI – DBD comparison

Madalina Chera ILD Phone Meeting – 24.09.2014

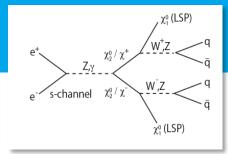


Point 5: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production at the ILC

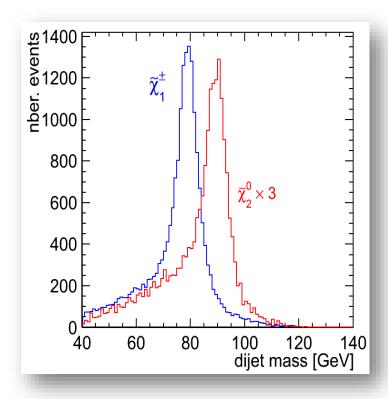
"Point 5" benchmark : gaugino pair production at ILC


http://arxiv.org/pdf/1006.3396.pdf (ILD LoI) http://arxiv.org/pdf/0911.0006v1.pdf (SiD LoI)

$\widetilde{\chi}_1^{\pm} \rightarrow \lambda$	$\widetilde{\chi}_1^0W^\pm$	BR = 99.4%
. • 1	• 1	


$$\widetilde{\chi}_2^0 \rightarrow \widetilde{\chi}_1^0 Z^0 \qquad BR = 96.4\%$$

Particle	Mass [GeV]
$\widetilde{\mathcal{X}}_1^0$	115.7
$\widetilde{\mathcal{X}}_1^\pm$	216.5
$\widetilde{\chi}_2^0$	216.7
$\widetilde{\chi}_3^0$	380
	≈n (I CD)


Study case - motivation

- Signal topology:
 - Four jets and missing energy (due to LSP)
 - Hadronic decay modes of gauge bosons chosen as signal
 - > Both decay channels treated as signal in turn

$$\widetilde{\chi}_1^{\pm} \rightarrow \widetilde{\chi}_1^0 W^{\pm}$$
 and $\widetilde{\chi}_2^0 \rightarrow \widetilde{\chi}_1^0 Z^0$

- $\succ \widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^{0}$ sample separation: essentially distinguish between W and Z pair events
- Good case for studying the detector and particle flow performance

Data Samples:

> Signal: 40000 $\tilde{\chi}_1^{\pm}$ events and 9000 $\tilde{\chi}_2^{0}$ events

> LOI sample:

- Signal generated with Whizard1.51
 Background generated with Whizard1.40
- The RDR beam spectrum was used

> DBD sample:

- Signal (as well as SM background)
 generated with Whizard 1.95
- The TDR beam spectrum was used
- Note: in the signal samples, the M_W was inadvertently lowered by Whizard to $M_W = 79.8$ GeV
- Signal + background were simulated and reconstructed with ilesoft, v01-06
- The jet energy scale was increased by 1%
- No γγ background overlay
- The analysis was re-run on existing data samples

- Signal + background were simulated and reconstructed with ilcsoft v01-16-02
- The jet energy scale was not increased
- The γγ background overlay was taken into account
- The analysis was re-run

Analysis Strategy

- Remove γγ → hadrons background
- Cluster event into 4 jets (Durham)
- Run kinematic fit (equal mass constraint)
- Run isolated lepton finder (Junping)
- Perform SUSY preselection
- ightharpoonup Separate $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ samples
- Perform mass measurement

only for DBD

only for DBD

common to both LOI and DBD

Analysis Strategy

Perform Susy preselection

Perform susy $\widetilde{\chi}_{1}^{\pm}$ and $\widetilde{\chi}_{2}^{0}$ samples

Perform mass measurement

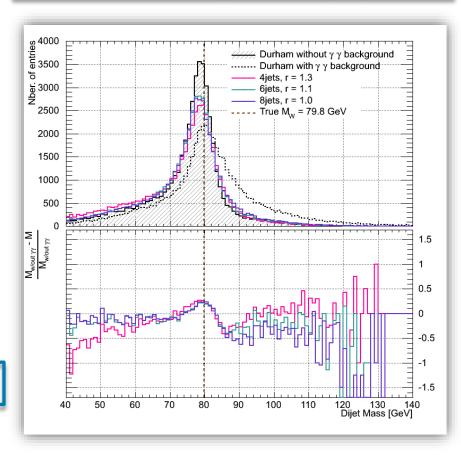
only for DBD

only for DBD

only for DBD

common to both LOI and DBD

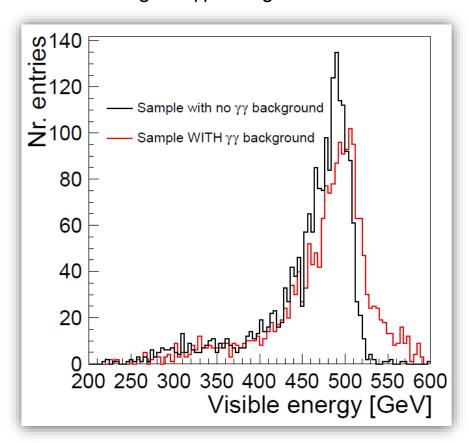
Removing the $\gamma\gamma$ Background II

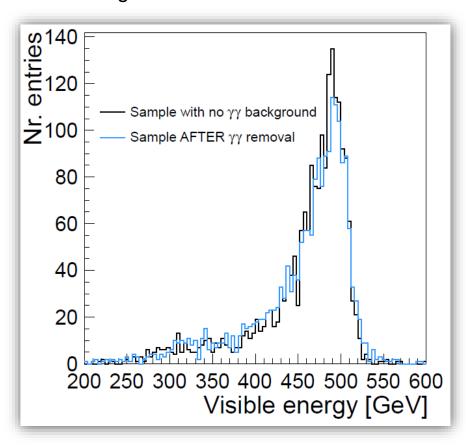

Tested configurations:

Jets #	4 jets	6 jets	8 jets
	1.1	0.9	0.8
R value	1.3	1.1	1.0
	1.5	1.3	1.2

Find the configuration most similar to the Durham distribution $\rightarrow \chi^2$ test :

Jets#	R val.	χ^2 /ndf W	χ^2 /ndf Z	
4 jets	1.3	13.4	11.6	
6 jets	1.1	6.9	4.7	
8 jets	1.0	9.3	6.8	


Used: exclusive longitudinal k_T algorithm



> The 6 jets configuration with an R-value of 1.1 is best for $\gamma\gamma$ background removal!

Removing the γγ Background III

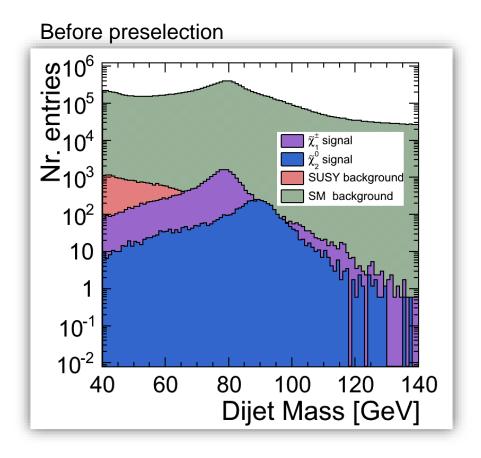
 \triangleright Checking the $\gamma\gamma$ background removal for the chosen configuration:

After running the longitudinal exclusive k_T algorithm the visible energy is very similar to the no background case.

Analysis Strategy

- ightharpoonup Remove $\gamma\gamma \rightarrow$ hadrons background
- Cluster event into 4 jets (Durham)
- Run kinematic fit (equal mass constraint)
- Run isolated lepton finder (Junping)
- Perform SUSY preselection
- ightharpoonup Separate $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ samples
- Perform mass measurement

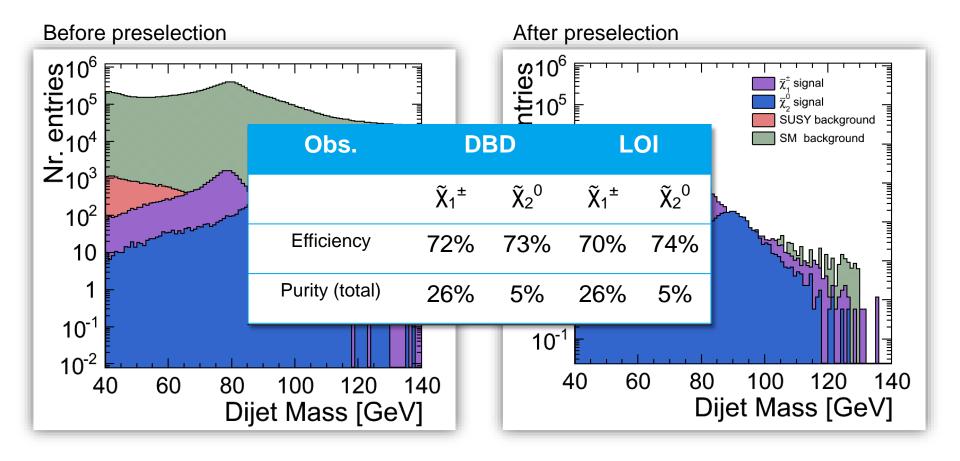
only for DBD


only for DBD


common to both LOI and DBD

Preselection Outcome

Example: the DBD sample [LOI sample very similar]



Preselection Outcome

Example: the DBD sample [LOI sample very similar]

Analysis Strategy

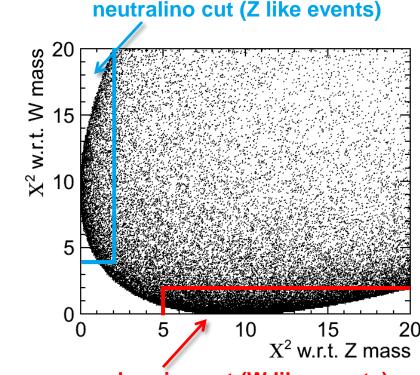
- \triangleright Remove $\gamma\gamma \rightarrow$ hadrons background
- Cluster event into 4 jets (Durham)
- Run kinematic fit (equal mass constraint)
- Run isolated lepton finder (Junping)
- Perform SUSY preselection
- ightharpoonup Separate $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ samples
- Perform mass measurement

only for DBD

only for DBD

common to both LOI and DBD

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Signal Sample Further Separation


 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\sigma^{2}}$$

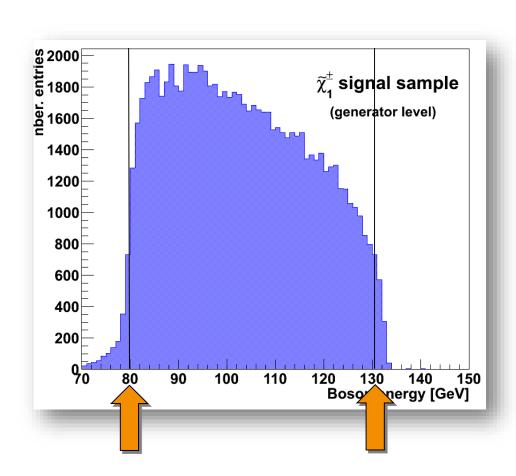
min $\chi^2 \rightarrow \tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ separation

- Downside: lose statistics
 - Cut away 43% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 68% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:

Obs.	DBD		L	Ol
	$\widetilde{\chi}_1^{\pm}$	$\widetilde{\chi}_2^{\ 0}$	$\widetilde{\chi}_1^{\pm}$	$\widetilde{\chi}_2{}^0$
Efficiency	53%	30%	56%	34%
Purity (total)	63%	38%	62%	35%
Purity (SUSY)	94%	62%	95%	66%

chargino cut (W like events)

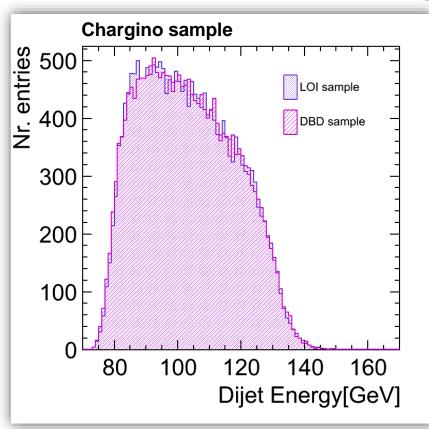
$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement

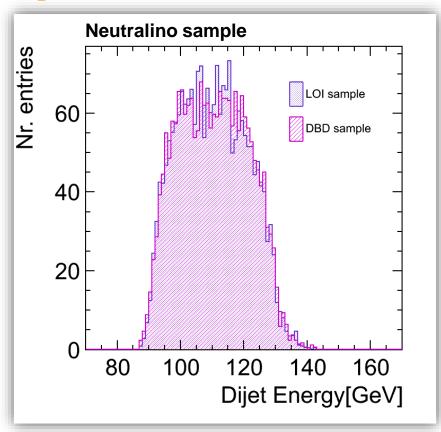

- > Mass difference to LSP $(\widetilde{\chi}_1^0)$ is larger than M_Z
- Observe the decays of real gauge bosons
- 2 body decay → the edges of the energy spectrum are kinematically determined
- Use dijet energy spectrum "end points" in order to calculate masses

$$\gamma = \frac{E_{beam}}{M_{\chi}}$$

$$E_{\pm} = \gamma \cdot EV^* \pm \gamma \cdot \beta \cdot \sqrt{E_V^{*2} - M_V^2}$$

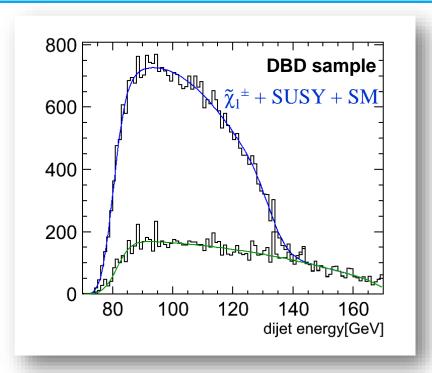
Real edge values [GeV]:


W _{low}	W _{high}	Z _{low}	Z _{high}
80.17	131.53	93.24	129.06



Dijet [Boson] Energy Comparison LOI - DBD

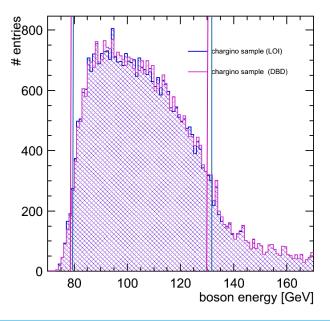
> Use dijet energy to measure $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ mass

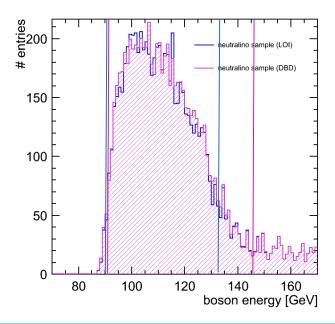

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement – "Endpoint" Method

Fit dijet energy spectrum and obtain edge positions:

$$f(x; t_{0_{-1}}, b_{0_{-2}}, \sigma_{1_{-2}}, \gamma) = f_{SM} + \int_{t_0}^{t_1} (b_2 t^2 + b_1 t + b_0) V(x - t, \sigma(t), \gamma) dt$$




Where:

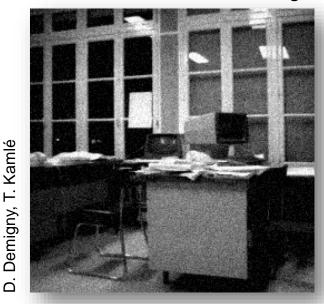
- The polynomial accounts for the slope of the initial spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

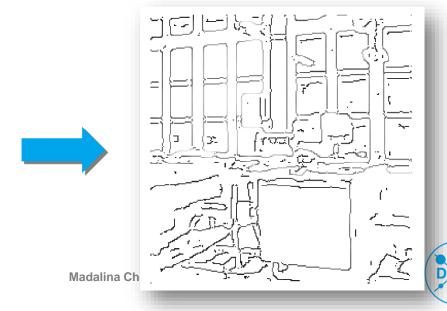
Issues of the "Endpoint Method"

Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
DBD	79.5±0.5	130.2±1.1	91.3±0.6	146.1±4.8
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5

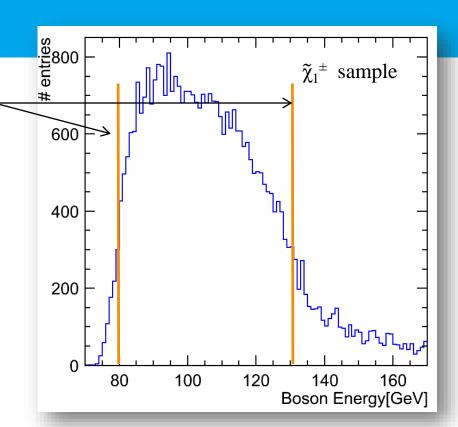
The fitting method appears to be highly dependent on small changes in the fitted distribution \rightarrow it is NOT appropriate for comparing the two samples.

We need to apply a different edge extraction method!

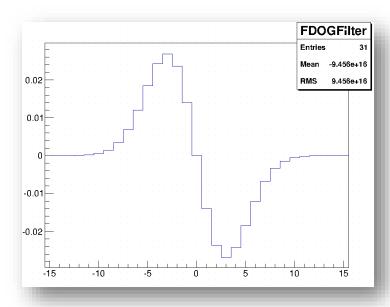

Endpoint Extraction using an FIR Filter


- Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- > FIR filters can operate both on discrete as well as continuous values.
- The concept of "finite impulse response"

 → the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.

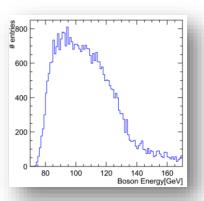

$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k]$$
 the input signal the filter coefficients (weights)

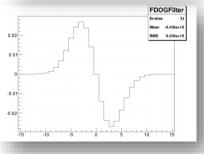
- y is obtained by convolving the input signal with the (finite) weights
- > FIR filters are used to detect edges in image processing techniques:



Goal: find edge positions in spectrum -

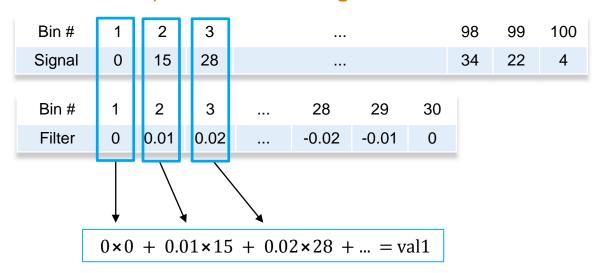
- Goal: find edge positions in spectrum
- Strategy:
 - Choose an FIR filter
 - Note: filter length << signal histogram length

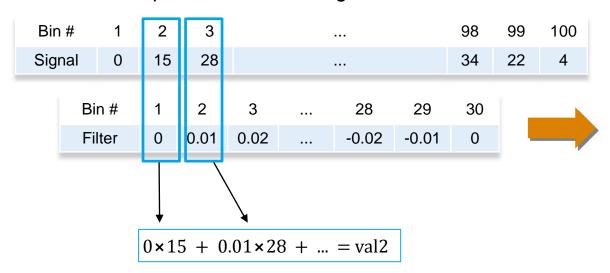




- Goal: find edge positions in spectrum
- > Strategy:
 - Choose an FIR filter
 - Note: filter length << signal histogram length</p>
 - Treat both signal histogram as well as filter as arrays:

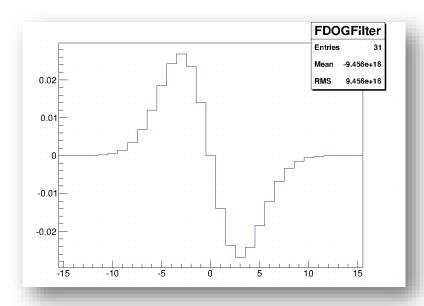
Bin #	1	2	3	 98	99	100
Signal	0	15	28	 34	22	4


Bin #	1	2	3		28	29	30
Filter	0	0.01	0.02	•••	-0.02	-0.01	0



- Goal: find edge positions in spectrum
- > Strategy:
 - Choose an FIR filter
 - Note: filter length << signal histogram length</p>
 - Treat both signal histogram as well as filter as arrays
 - Calculate dot product between Signal and Filter → obtain one value

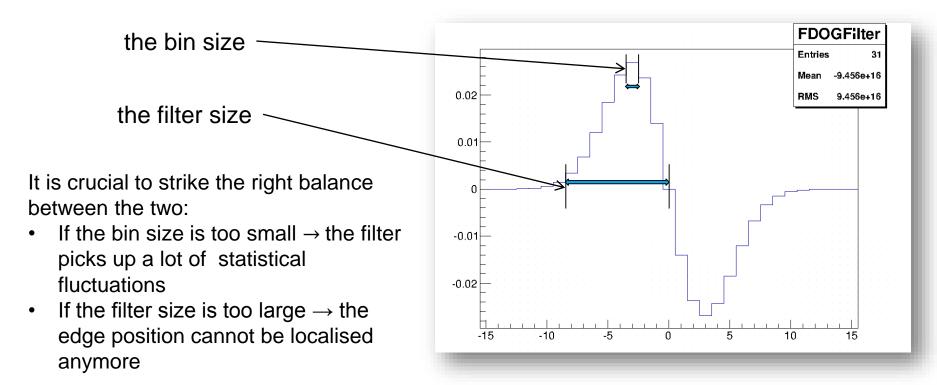
- Goal: find edge positions in spectrum
- Strategy:
 - Choose an FIR filter
 - Note: filter length << signal histogram length</p>
 - Treat both signal histogram as well as filter as arrays
 - Calculate dot product between Signal and Filter → obtain one value


"Move" Filter along the (length) of the signal → obtain more values, which will form the total filter response

Choosing the Appropriate Filter

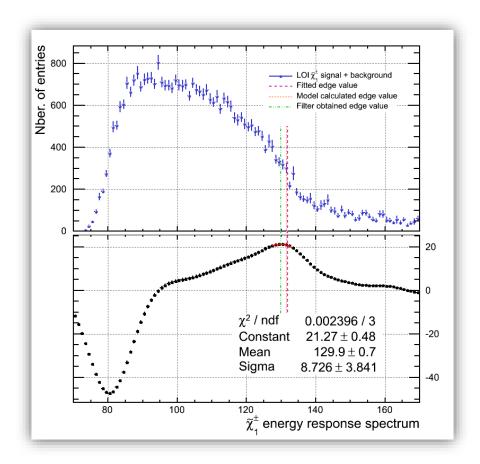
In order to choose an apropriate filter one can apply the following criteria:

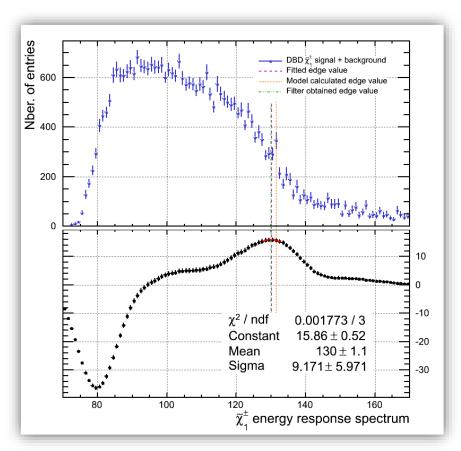
Canny's criteria: [J. F. Canny. **A computational approach to edge detection.** *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]


- Good detection: probability of obtaining a peak in the response must be high
- Localisation: standard deviation of the peak position must be small
- Multiple response minimisation: probability of false postive detection must be small
- Canny has suggested that an optimal filter is very similar to the first derivative of a Gaussian

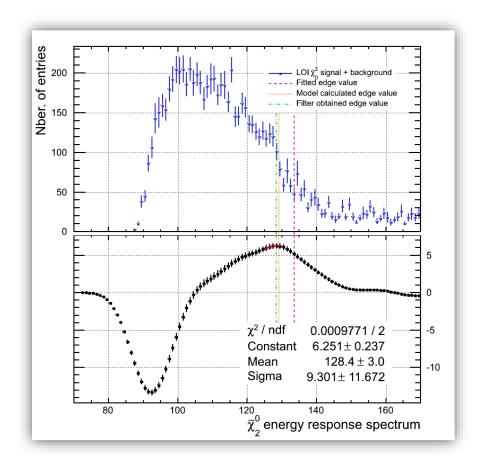
Optimising the FDOG Filter

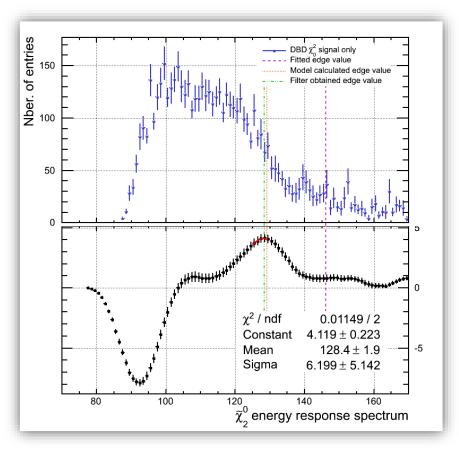
There are two important filter characteristics that must be optimised:

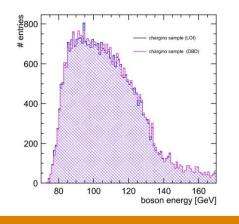


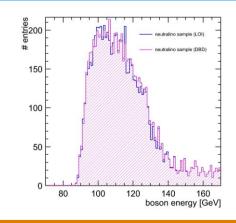

A toy MC study has been performed to optimise the filter and bin size.

Chosen values: bin size = 1 GeV/Bin; filter size = $5 \times 2 \text{ bins}$.


FIR Edge Extraction Comparison – LOI to DBD




FIR Edge Extraction Comparison – LOI to DBD



- On the chargino samples the filter appears to perform slightly worse than the fit in the LOI sample and just as well in the DBD case.
- However the filter performs considerably better in the case of the neutralino samples both for the LOI and the DBD case.

Edge Extraction Comparison

True	80.17	131.53	93.24	129.06
Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5
DBD	79.5±0.5	130.2±1.1	91.3±0.6	146.1±4.8
LOI	80.4±0.2	129.9±0.7	92.3±0.4	128.3±0.9
DBD	79.8±0.3	129.9±1.0	92.2±0.4	128.3±0.6

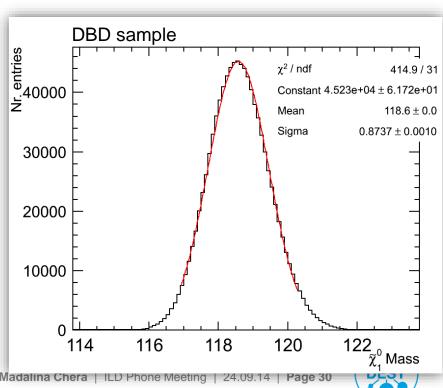
The filter extraction method is preferable:

- it is more stable
- provides smaller uncertainties in determining the edge position.

Edge Extraction Comparison

True	80.17	131.53	93.24	129.06
Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
LOI	80.4±0.2	129.9±0.7	92.3±0.4	128.3±0.9
DBD	79.8±0.3	129.9±1.0	92.2±0.4	128.3±0.6

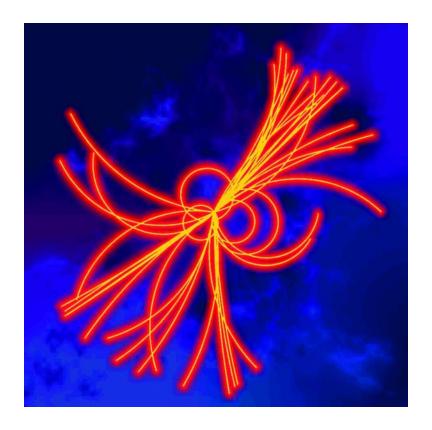
Sample	Mass χ̃ ₁ ± [GeV]	Mass $\widetilde{\chi}_2^0$ [GeV]	Mass χ̃ ₁ º [GeV]
TRUE	216.5	216.7	115.7
LOI	216.9±3.2	220.0±1.4	118.4±1.1
DBD	217.3±3.2	220.4±1.5	118.5±0.9


- > The filter method is much more stable in determining the edge position
- The mass values extracted from the LOI and DBD samples are compatibile within their statistical errors
- The systematic errors will be addressed by a mass calibration study [ongoing]

Toy MC for the Mass Calculation

- ➤ To estimate the statistical precision of the mass measurement → toy MC
- Input: edge values + their fluctuations as obtained from the filter
- 1 000 000 values were generated within the edge fluctuations
- The mass calculations have been performed with the generated values 1 000 000 times

Conclusions


- A comparison between the LOI and DBD detectors has been made with "Point5":
 - The fitting method for the mass determination appears very sensitive to small changes. A more robust method is needed.
 - Applying a finite impulse response (FIR) filter in order to extract the edge information instead of the fitting method is:
 - ➤ More robust (i.e. independent on distribution shape)
 - > Provides just as good if not better statistical precision
 - The γγ background in the DBD sample successfully removed

> Outlook:

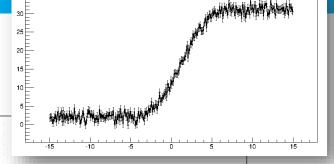
- Perform mass calibration (to determine systematics).
- Perform 2D fit on dijet masses to improve the x-section measurement
- Perform full comparison LOI DBD SGV.

Thank You!

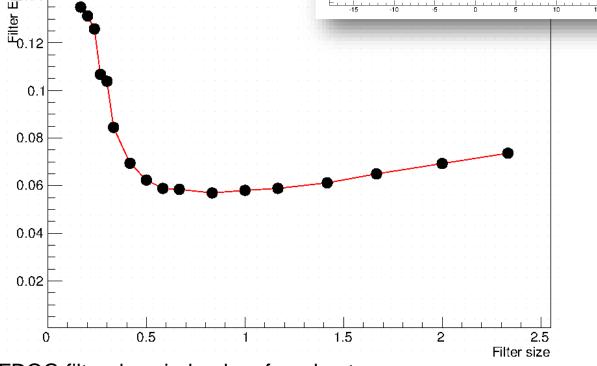
Preselection

- Apply the following cuts to both samples:
- 1. Number tracks in event > 20
- 2. $100 \text{ GeV} < E_{\text{visible}} < 300 \text{ GeV}$
- 3. $E_{jet} > 5 \text{ GeV}$
- 4. $|\cos(\theta_{\text{jets}})| < 0.9$
- 5. $Y_{34} > 0.001$
- 6. Number tracks per jet > 2
- 7. $|\cos(\theta_{\text{miss}})| < 0.99$
- 8. E_{lepton} < 25 GeV
- 9. Number of PFOs per jet > 3
- 10. $|\cos(\theta_{\text{miss}})| < 0.8$
- 11. Mmiss > 220 GeV
- 12. Kinematic fit converged

- 13. No isolated lepton
- **14.** 30 < Number PFOs in event < 150
- 15. 4 < Nr. Tracks with $P_T > 1$ GeV < 50
- 16. Thrust < 0.98


DBD

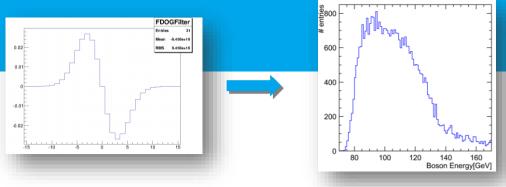
LOI & DBD common



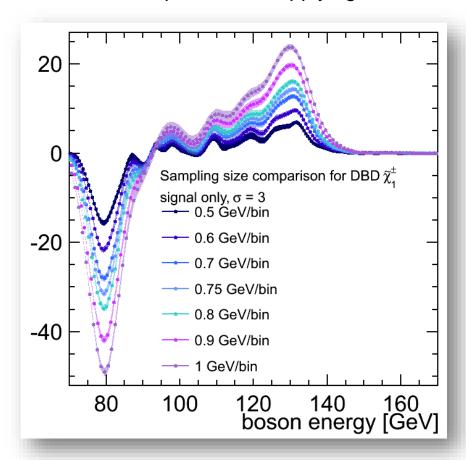
Optimising the FDOG Filter

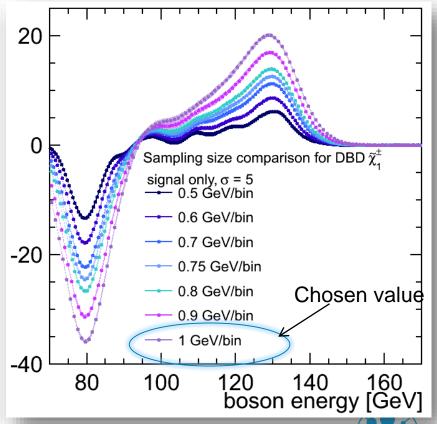
Studied the effect of the filter size on a smeared step edge Monte Carlo data.

S. Caiazza


The FDOG filter does indeed perform best.

The filter size should be comparable to the size of the edge feature. We chose $\sigma = 5$ bins.




Optimising the FDOG Filter

There are two important filter characteristics that must be optimised: the bin size and the filter size.

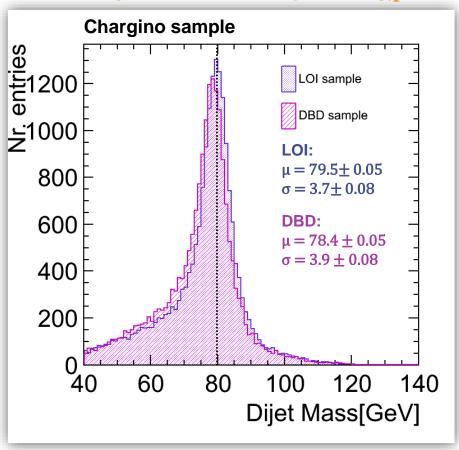
Filter response after applying the FDOG Filter to the $\tilde{\chi}_1^{\pm}$ energy distribution:

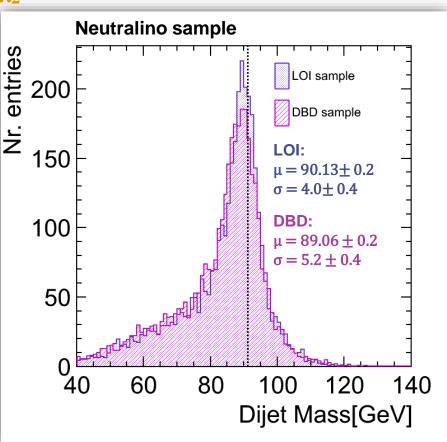
Back up slides

Removing the $\gamma\gamma$ Background

- ➤ Use the longitudinal exclusive k_T jet clustering algorithm:
- > It calculates:
 - > The "distance" between each pair of reconstructed particles:

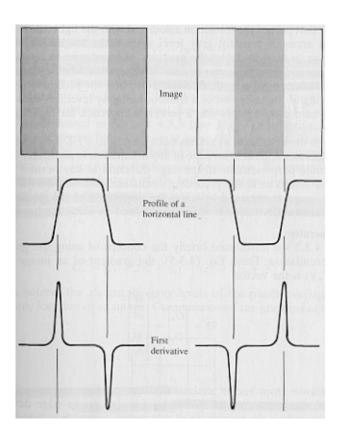
$$dist_{ij} = \frac{\min(p_{Ti}^2, p_{Tj}^2) \cdot \Delta R_{ij}^2}{R^2}$$


- \triangleright The distance between each reconstructed particle and the beam $(dist_{ij}^{Beam})$
- \triangleright If the $dist_{ij}^{Beam}$ is minimum then the particle is discarded
- The number of required jets as well as the R parameter are free parameters.
- In order to increase performance:


optimise the number of requested jets and the R-value!

Dijet [Boson] Mass Comparison – LOI to DBD

> Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ events → measure cross section

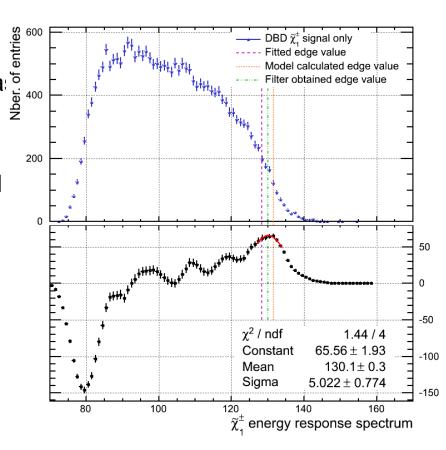

> The DBD distribution appears slightly narrower and shifted towards lower energy, however the DBD and LOI distributions are compatible with each other.

Applying an FIR Filter – Example: the box function

- The changes of a function can be described by the derivative → interpret the histogram as a 1D function
- The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h=1)$$

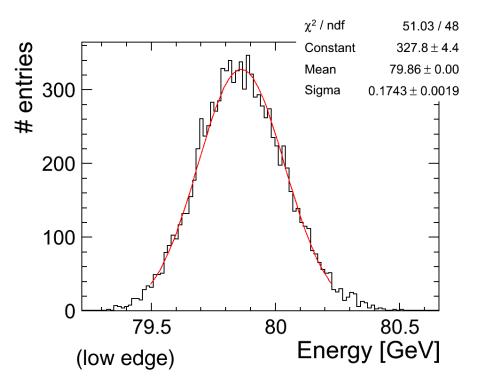
The first derivative is approximated by using the kernel [-1, 0, 1]

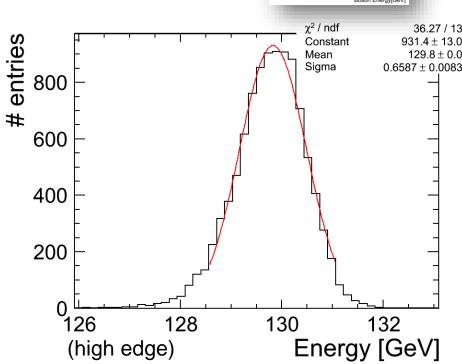

Applying an FIR Filter – Example: the box function

- The changes of a function can be described by the derivative → interpret the histogram as a 1D function
- The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

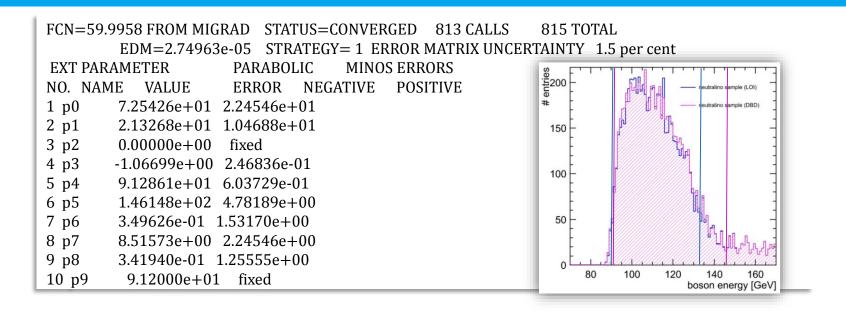
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

- The first derivative is approximated by using the kernel [-1, 0, 1]
- > The kernel is convoluted with the histogram:


$$response_i = -1 \times bin_{i-1} + 0 \times bin_i + 1 \times bin_{i+1}$$



Toy MC for the Filter Edge Extraction


- ➤ To estimate the statistical precision of the edge extraction → toy MC
- > 10000 $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ energy spectra have been produced
- The FDOG filter was then applied 10000 times
- > Example: for the $\tilde{\chi}_1^{\pm}$ case:

Issues of the "Endpoint Method"

Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
DBD	79.5±0.5	130.2±1.1	91.3±0.6	146.1±4.8
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5

The fitting method appears to be highly dependent on small changes in the fitted distribution \rightarrow it is clearly NOT appropriate for a comparing the simulation and reconstruction performance.

We need to apply a different edge extraction method!

