# TrueJet - a Marlin processor to group particles using the true history

#### Mikael Berggren<sup>1</sup>

<sup>1</sup>DESY, Hamburg

#### ILD phone meeting Meeting, June 20, 2012





# $\begin{array}{l} \text{Physics} \Rightarrow \text{Whizard} \Rightarrow \text{Parton shower} \Rightarrow \text{hadronisation} \\ \Rightarrow \text{decays} \Rightarrow \text{Geant} \Rightarrow \text{MarlinReco} \Rightarrow \text{Pandora} \Rightarrow \text{Jet} \\ \text{clustering} \Rightarrow \textbf{YOU} \end{array}$

The TrueJet processor tries to connect YOU with the Physics using the true information about the event.

- The connection from Geant to You is done by the RecoMCTruthLinker processor, linking PFOs (and jets) to MCParticles.
- TrueJet takes care of the rest: How does the MCParticles connect to the hard event.

Physics  $\Rightarrow$  Whizard  $\Rightarrow$  Parton shower  $\Rightarrow$  hadronisation  $\Rightarrow$  decays  $\Rightarrow$  Geant  $\Rightarrow ... \Rightarrow$ YOU

From MCParticles to Physics: TrueJet

- To link further back, TrueJet joins hadrons from the final colour singlets to di-jets.
- The di-jet is split into two jets, connected to the final quarks.
- It follows the decay-chain of the primary hadrons, and assigns each of them to the jet of it's parent.
- The process continues from generated to simulated particles.
- Then the final quark is followed back through the parton-shower.
- Ultimately, the initial colour singlet is found.

The initial colour singlet is the closest one gets to the initial physics (W,Z,h,...).

Idea: Since the history is created by Pythia: Re-create the Pythia arrays p and k from the MCParticle collection.

#### • Fix parent-child relations:

- If the true particle is decayed in the generator, check if any of the children is created in simulation. If so, E and p will be inconsistent. ⇒
  - Promote parent to stable
  - Mark all children as created in simulation.
- A CMShower should have two parents sometimes not the case. Fix that.
  - A partial fixup of this issue is already in the stdhep-reader. However, sometimes (mostly in 6-lepton events) it is wrong.
- Determine pairing initial particles
  - Easy for quarks, tricky for leptons.
- )  $t\bar{t}$  is a mess and need special treatment.

Idea: Since the history is created by Pythia: Re-create the Pythia arrays p and k from the MCParticle collection.

- Fix parent-child relations:
  - If the true particle is decayed in the generator, check if any of the children is created in simulation. If so, E and p will be inconsistent.
    - Promote parent to stable
    - Mark all children as created in simulation.
    - A CMShower should have two parents sometimes not the case. Fix that.
      - A partial fixup of this issue is already in the stdhep-reader. However, sometimes (mostly in 6-lepton events) it is wrong.
  - 3 Determine pairing initial particles
    - Easy for quarks, tricky for leptons.
  - )  $t\bar{t}$  is a mess and need special treatment.

Idea: Since the history is created by Pythia: Re-create the Pythia arrays p and k from the MCParticle collection.

- Fix parent-child relations:
  - If the true particle is decayed in the generator, check if any of the children is created in simulation. If so, E and p will be inconsistent.
    - Promote parent to stable
    - Mark all children as created in simulation.
  - A CMShower should have two parents sometimes not the case. Fix that.
    - A partial fixup of this issue is already in the stdhep-reader. However, sometimes (mostly in 6-lepton events) it is wrong.
  - 3 Determine pairing initial particles
    - Easy for quarks, tricky for leptons.
  - $\bullet$  *t* $\overline{t}$  is a mess and need special treatment.

Idea: Since the history is created by Pythia: Re-create the Pythia arrays p and k from the MCParticle collection.

- Fix parent-child relations:
  - If the true particle is decayed in the generator, check if any of the children is created in simulation. If so, E and p will be inconsistent.
    - Promote parent to stable
    - Mark all children as created in simulation.
  - A CMShower should have two parents sometimes not the case. Fix that.
    - A partial fixup of this issue is already in the stdhep-reader. However, sometimes (mostly in 6-lepton events) it is wrong.
  - Oetermine pairing initial particles
    - Easy for quarks, tricky for leptons.
  - )  $t\bar{t}$  is a mess and need special treatment.

Idea: Since the history is created by Pythia: Re-create the Pythia arrays p and k from the MCParticle collection.

- Fix parent-child relations:
  - If the true particle is decayed in the generator, check if any of the children is created in simulation. If so, E and p will be inconsistent.
    - Promote parent to stable
    - Mark all children as created in simulation.
  - A CMShower should have two parents sometimes not the case. Fix that.
    - A partial fixup of this issue is already in the stdhep-reader. However, sometimes (mostly in 6-lepton events) it is wrong.
  - Determine pairing initial particles
    - Easy for quarks, tricky for leptons.
  - $t\bar{t}$  is a mess and need special treatment.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.

• During the back-tracking, note if inner bremsstrahlung occurred.

• Add this photon to the jet that its parent quark gives rise to.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.

• During the back-tracking, note if inner bremsstrahlung occurred.

• Add this photon to the jet that its parent quark gives rise to.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.

• During the back-tracking, note if inner bremsstrahlung occurred.

Add this photon to the jet that its parent quark gives rise to.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.

• During the back-tracking, note if inner bremsstrahlung occurred.

Add this photon to the jet that its parent quark gives rise to.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.

During the back-tracking, note if inner bremsstrahlung occurred.
Add this photon to the jet that its parent quark gives rise to.

- Find hard leptons, if any and assign each one, and their decay-products and any FSR, to a jet.
- Assign the ISR photons to one jet each.
- Find "clusters" two quarks joined together into a bound state during the PS. Assign jets to the the decay products.
  - Normally: cluster  $\rightarrow$  one hadron. But they are created by two quarks  $\Rightarrow$  two jets assigned one will often be empty !
- Find strings easy. Their descendants are hadrons, their first and last parents are final quarks.
- For clusters and strings: back-track to the initial hard system.
  - Following the quarks ignore the gluons.
  - If a final quark comes from a gluon-splitting ⇒ backtrack the gluon, but stop assigning the parents to jets. Note jet which jet radiated the gluon.
- During the back-tracking, note if inner bremsstrahlung occurred.
  - Add this photon to the jet that its parent quark gives rise to.

- For clusters and strings, assign the first generation hadrons to a jet induced by the final quark to which it is closest to in angle.
  - There is always two, and only two, quarks as immediate parents.
- Follow the decay-chain of each hadron, assigning any product to the same jet.
  - NB: Done to the end of the MCParticle parent-child chain. ⇒ Both generator and simulator particles assigned to jets.
- All particles (post-PS) that are leftover are from overlaid events, and are grouped together in a single jet.

- For clusters and strings, assign the first generation hadrons to a jet induced by the final quark to which it is closest to in angle.
  - There is always two, and only two, quarks as immediate parents.
- Follow the decay-chain of each hadron, assigning any product to the same jet.
  - NB: Done to the end of the MCParticle parent-child chain. ⇒ Both generator and simulator particles assigned to jets.
- All particles (post-PS) that are leftover are from overlaid events, and are grouped together in a single jet.

- For clusters and strings, assign the first generation hadrons to a jet induced by the final quark to which it is closest to in angle.
  - There is always two, and only two, quarks as immediate parents.
- Follow the decay-chain of each hadron, assigning any product to the same jet.
  - NB: Done to the end of the MCParticle parent-child chain. ⇒ Both generator and simulator particles assigned to jets.
- All particles (post-PS) that are leftover are from overlaid events, and are grouped together in a single jet.

# **TrueJet: Output Collections**

TrueJet is a normal Marlin processor. The only parameters are the in/output collection names.

- Jets and ancestors
  - TrueJets : (RecoParticles). getParticles gives all PFOs in the jet, getParticleIDs returns the type as
    - string
    - 2 lepton
    - Cluster
    - ISR
    - overlay 🧿
  - FinalColorSinglets : (RecoParticles). getEnergy etc. gives true values for the dijet from the final quarks. getParticles gives the TrueJets this colour-singlet gives rise to (always two).
    - For the beam jet it is the sum of the weight 1 MCParticles) .
  - InitialColorSinglets: (RecoParticles)
    - If there are no gluon-induced jets: same a above.
    - If there are, it is the true values of all jets (gluon and quark) coming from the same initial quark pair.

Mikael Berggren (DESY-HH)

TrueJet

## **TrueJet: Output Collections**

- Relations:
  - TrueJetPFOLink : link from PFO:s to true jets
  - TrueJetMCParticleLink : link from jets to MCParticles. Meaning of the weight:
    - 0 in the parton-shower.
    - 1 stable to be used for eg. total E.
    - 2 un-stable.

This code is not the same as getGeneratorStatus, see above. Summing MCPs with weight == 1 should always be correct - no double-counting or lost energy. Anything else is a bug !

- FinalPartonLink : points from FinalColorSinglet a to the parton (an MCParticle) at the end of the parton-shower that gives rise to the jet
- InitialPartonLink : points from an InitialColorSinglets to the parton (an MCParticle) at the beginning of the parton-shower that gives rise to the jet.
- FinalColorSingletLink: link from TrueJet to the final colour-singlet it comes from.
- InitialColorSingletLink: link from TrueJet to the initial colour-singlet, it ...

#### Output Collections

#### TrueJet: Usage

- To create, just do as any Marlin processor compile, add to MARLIN\_DLL, add the processor decryption and call in the xml.
- To use the information in your processor, there is a helper class TrueJet\_Parser.
  - Let your processor inherit TrueJet\_Parser. In the header:

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Output Collections

# TrueJet: Usage

#### • Then ...

- In the ctor of My\_processor, cut'n'paste calls to registerInputCollection for all the output collections from TrueJet see README.
- Then in My\_processor::processEvent,

```
TrueJet_Parser* tj= this ;tj->getall(evt);
```

```
Once done, add
```

```
if ( tj ) delall();
```

at the end of My\_processor::processEvent, to avoid leaks.

• There is an example processor - Use\_TrueJet - that contains calls to all methods of TrueJet\_Parser.

# **Conclusions and Outlook**

#### • TrueJet will be on SVN today.

- It will be useful for disentangling effects of jet clustering from particle flow, from combinatorics, for detector effects.
- It is also useful for testing and developing overlay-removal and jet-clustering methods.
- Status:
  - Timing: 1.4 ms/event. No leaks.
  - All Whizard generated event-types have been tested and works except γγ (which has, however been successfully tested at the generator output level)
  - Not tested on  $\gamma\gamma \rightarrow hadrons$  from Pythia.
  - Right now, it does not work for 8-fermion samples from Physim all Whizard generated event-types have been tested and works.

## **Conclusions and Outlook**

- TrueJet will be on SVN today.
- It will be useful for disentangling effects of jet clustering from particle flow, from combinatorics, for detector effects.
- It is also useful for testing and developing overlay-removal and jet-clustering methods.
- Status:
  - Timing: 1.4 ms/event. No leaks.
  - All Whizard generated event-types have been tested and works except γγ (which has, however been successfully tested at the generator output level)
  - Not tested on  $\gamma\gamma \rightarrow hadrons$  from Pythia.
  - Right now, it does not work for 8-fermion samples from Physim all Whizard generated event-types have been tested and works.

# **Conclusions and Outlook**

- TrueJet will be on SVN today.
- It will be useful for disentangling effects of jet clustering from particle flow, from combinatorics, for detector effects.
- It is also useful for testing and developing overlay-removal and jet-clustering methods.
- Status:
  - Timing: 1.4 ms/event. No leaks.
  - All Whizard generated event-types have been tested and works except γγ (which has, however been successfully tested at the generator output level)
  - Not tested on  $\gamma\gamma \rightarrow hadrons$  from Pythia.
  - Right now, it does not work for 8-fermion samples from Physim all Whizard generated event-types have been tested and works.