Jet reconstruction at Linear Colliders

I. García*, M. Vos

IFIC (CSIC/UVEG)
Valencia, Spain

With help from Gavin Salam (CERN)

Introduction

- Jet reconstruction is a crucial step in the data analysis and it has to be adapted to the conditions of the machine
- Future high-energy lepton colliders present an environment that differs in several important respects from that encountered at the Z-pole
-Do we need to rethink jet reconstruction? which algorithms are most suitable?

A brief history of sequential recombination algorithms

JADE 1980s $y_{i j}=\frac{E_{i}^{2}, E_{j}^{2}}{Q^{2}}\left(1-\cos \theta_{i j}\right)$	Experience on $\mathrm{e}^{+} \mathrm{e}^{-}$ data at Z-pole	Durham or $\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{k}_{\mathrm{t}}$ algorithm (LEP and SLC) $d_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)$
		Adapt to hadron colliders
Generalised $e^{+} e^{-} k_{t}$ algorithm $\begin{aligned} & d_{i j}=\min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right) /(1-\cos R) \\ & d_{i B}=E_{i}^{2} \end{aligned}$	Feed back into $\mathrm{e}^{+} \mathrm{e}^{-}$ algorithms	$\begin{aligned} & d_{i j}=\min \left(p_{T i}^{2 n}, p_{T j}^{2 n}\right) \Delta R_{i j}^{2 n} / R^{2 n} \\ & d_{i B}=p_{T i}^{2 n} \\ & \mathrm{n}=0: \text { Cambridge-Aachen } \\ & \mathrm{n}=1: \text { Longitudinally invariant } \mathrm{k}_{\mathrm{t}} \\ & \mathrm{n}=-1: \text { Anti- } \mathrm{k}_{\mathrm{t}} \text { (LHC default) } \end{aligned}$

Moretti, Lonblad, Sjostrand, JHEP9808 (1998)
Catani, Dokshitzer, Webber, Phys.Lett. B285 (1992)
Catani, Dokshitzer, Seymour, Webber, Nucl.Phys. B406 (1994)
Ellis, Soper, Phys.Rev. D48 (1993)
All algorithms available in FastJet
Time to rethink $\mathrm{e}^{+} \mathrm{e}^{-}$algorithms!!

Boost invariance at hadron colliders

- At hadron colliders the partons that participate in the hard process generally carry different fractions of the initial hadron energy.
- The final state acquires a substantial Lorentz boost along the beam axis.
- LHC di-jets: $\beta_{z} \sim 1$
- LHC tt: $\beta_{z} \sim 0.5$
- Replace the [energy, polar angle] basis by [transverse momentum, rapidity]

Boost invariance at lepton colliders

- Photons emitted by the incoming beam particles (Initial State Radiation) can carry away a significant fractions of the nominal center-of-mass energy
- For $e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow f \bar{f} \quad$ process, with $m_{f}<M_{Z} / 2 \rightarrow$ large fraction of events tends to return to the Z-pole
- However for most interesting processes at a future lepton collider ISR plays a much less important role
- At lepton colliders ISR leads to a minor boost
- The basis $[\mathrm{E}, \boldsymbol{\theta}]$ is the most natural choice

Background levels at future LC

- The pile-up at the LHC is a serious challenge that has led to a large body of work on mitigation and correction methods
- LEP or SLC presented effectively negligible background
- The $\gamma \gamma \longrightarrow$ hadrons background at CLIC has strong impact on jet reconstruction performance [CLIC CDR, Marshall \& Thomson, arXiv: 1308.4537]
- Less pronounced, but non-negligible impact on ILC physics [many studies, arXiv:1307.8102]
- Using hadron collider algorithms can reduce these problems [CLIC CDR]

The Valencia jet algorithm

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the Durham-like distance criterion;

$$
d_{i j}=\min \left(E_{i}^{2 \beta}, E_{j}^{2 \beta}\right)\left(1-\cos \theta_{i j}\right) / R^{2}
$$

with the robustness against background of the longitudinally invariant $\mathbf{k}_{\mathbf{t}}$ algorithm

$$
d_{i B}=p_{T}^{2 \beta}
$$

The exponent β allows to tune the background rejection level
The algorithm has been implemented as a plugin for the FastJet package and is available in fjcontrib
$\underline{\text { https: / / fastjet.hepforge.org/trac/browser/contrib/contribs/ValenciaJetAlgorithm }}$

Comparison of the distance criteria

Two test particles with
constant energy ($\mathrm{E}=1 \mathrm{GeV}$) and
fixed polar angle separation (100 mrad)

Beam axis

Comparison of the distance criteria

Two test particles with
constant energy ($\mathrm{E}=1 \mathrm{GeV}$) and
fixed polar angle separation (100 mrad)
Rotating from central to forward region

Comparison of the distance criteria

As the two-particle system rotates into the forward region, the distance d_{ij} of longitudinally invariant k_{t} decreases
($\Delta \eta$ increases, p_{T} decreases faster)

Traditional $\mathrm{e}^{+} \mathrm{e}^{-}$algorithms and Valencia have constant d_{ij}

Comparison of the distance criteria

The ratio of the inter-particle distance and the beam distance: $d_{i j} / d_{i B}$ drives the robustness to (forward) background: the decision to assign the particle to final-state or beam jets depends on this ratio (and R)

Long. inv. k_{t} 's robustness is indeed due to its increasing $\mathrm{d}_{\mathrm{ij}} / \mathrm{d}_{\mathrm{iB}}$ ratio

Valencia with $\beta=1$ is similar (by design) to long. inv. k_{t}

Comparison of the distance criteria

The ratio of the inter-particle distance and the beam distance: $\mathrm{d}_{\mathrm{ij}} / \mathrm{d}_{\mathrm{iB}}$ drives the robustness to (forward) background: the decision to assign the particle to final-state or beam jets depends on this ratio (and R)

Long. inv. k_{t} 's robustness is indeed due to its increasing $\mathrm{d}_{\mathrm{ij}} / \mathrm{d}_{\mathrm{iB}}$ ratio

Valencia with $\beta=1$ is similar (by design) to long. inv. k_{t}

Jet reconstruction performance

IFIC / LAL study of ILC lepton+jets tt @ 500 GeV , [arXiv:1307.8102]

Event Generation
Whizard 1.95

Reconstruct Particle Flow objects using PANDORA

DBD Samples

Reconstruct jets (exclusive, $\mathrm{n}=4$)

The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation

$$
d^{2}=\left(\frac{m_{\text {cand. }}-m_{t}}{\sigma_{m_{t}}}\right)^{2}+\left(\frac{E_{\text {cand. }}-E_{b e a m}}{\sigma_{E_{\text {cand. }}}}\right)^{2}+\left(\frac{p_{b}^{*}-68}{\sigma_{p_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}-0.23}{\sigma_{\cos \theta_{b W}}}\right)^{2}
$$

$\mathrm{tt} \rightarrow(\mathrm{bjj})(\mathrm{blv})$

We consider four jet reconstruction algorithms

- Durham algorithm
- Generic $\mathbf{e}+\mathbf{e}-\mathbf{k}_{\mathrm{t}}$ algorithm with beam jets with $\mathrm{R}=1$
- Longitudinally invariant $\mathbf{k}_{\mathfrak{t}}$ algorithm with $\mathrm{R}=1.5$
- Valencia algorithm with $\mathrm{R}=1.2$ and $\beta=0.8$.

The choice of parameters corresponds to the optimal setting determined in a scan over a

broad range of parameters.

Durham is affected by $\gamma \gamma->$ hadrons, longitudinally invariant \mathbf{k}_{t} and Valencia OK

Resolution on jets reconstruction

Degradation of all jet-related measurements due to $\gamma \gamma \rightarrow$ hadrons background

$\mathrm{RMS}_{90}[\mathrm{GeV}]$	$E_{4 j}$	E_{W}	m_{W}	E_{t}	m_{t}
Durham	23.2	19.6	20.3	19.5	21.4
$e^{+} e^{-} k_{t}$	25.6	20.8	21.6	20.5	22.8
long. inv. k_{t}	21.7	18.4	18.9	18.4	20.1
Valencia	21.4	18.0	18.8	18.2	20.0
Four-jet system					

Hadronic W candidate

Durham and $e+e-k_{t}$ significantly degraded.

Long. inv. \mathbf{k}_{t} algorithm and Valencia offer better reconstruction for all hadronic observables

Jet reconstruction performance

CLIC di-boson (ZZ) production @ 500 GeV

Reconstruct Particle Flow objects using PANDORA

Reconstruct jets
(exclusive, $\mathrm{n}=4$)

Form Z boson candidates, selecting best jet pairs

Chosen to facilitate comparison with Marshall\&Thomson, CLIC CDR

No background: it doesn't really matter which algorithm you pick

Jet reconstruction performance

CLIC di-boson (ZZ) production @ 500 GeV
+300 BX of $\gamma \gamma \rightarrow$ hadrons

Reconstruct Particle Flow objects using PANDORA + quality and timing cuts

Reconstruct jets (exclusive, $\mathrm{n}=4$)

Form Z boson candidates, selecting best jet pairs

Nominal background: Durham is severely affected, longitudinally invariant k_{t} and Valencia OK

Jet reconstruction performance

The previous results in numbers: central value, width of the Z-boson mass peak and RMS_{90}

$\sqrt{s}=500 \mathrm{GeV}$, no background overlay			
$[\mathrm{GeV}]$	m_{Z}	σ_{Z}	RMS_{90}
Durham	90.6	5.4	13.8
long. inv. k_{t}	90.4	5.3	14.3
Valencia	90.3	5.2	12.5
$\sqrt{s}=500 \mathrm{GeV}, 0.3$	$\gamma \gamma$	\rightarrow hadrons events/BX	
$[\mathrm{GeV}]$	m_{Z}	σ_{Z}	RMS_{90}
Durham	101.1	13.6	28.8
long. inv. k_{t}	920	9.0	17.2
Valencia	92.5	9.2	16.2

$\mathrm{e}^{+} \mathrm{e}^{-}$style algorithm can compete with hadron collider algorithm

Boosted top quarks

CLIC $3 \mathrm{TeV}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}\right)$
Without $\gamma \gamma \rightarrow$ hadrons background
CLIC-ILD detector simulation
PANDORA PFA
Valencia e ${ }^{+} e^{-}$jet algorithm ($\mathrm{N}_{\mathrm{j}}=2, \mathrm{R}=1, \mathrm{~b}=1$)
Could have picked long. inv. k_{t} with $\mathrm{R}=0.8-1.2$

Detector performance for boosted hadronic top jets ($\mathrm{E} \sim 1200 \mathrm{GeV}$)

- Energy resolution (RMS90) $=2.4 \%$
- Jet mass resolution (RMS90) $=3.2 \%$

Note: resolution considers reconstructed energy versus stable particle jets; relative to the actual top parton the energy resolution is 5% and the width of the mass peak $\sim 7 \%$

Boosted top quarks

Boosted top quarks

With $\gamma \gamma \rightarrow$ hadrons background

Background has a profound impact on fat jet substructure:

Raw jet mass resolution badly degraded (from dream 3.2\% to nightmare 16\%)

Preliminary: grooming jets restores jet mass resolution to $\sim 4 \%$
Results correspond to a primitive $\mathrm{e}^{+} \mathrm{e}^{-}$variant of trimming based on $3+3$ Valencia $\mathrm{R}=0.2$ jets \rightarrow optimisation needed

Conclusions

- $\gamma \gamma \rightarrow$ hadrons bkg. forces us to rethink $\mathbf{e}^{+} \mathbf{e}^{-}$algorithms because old $\mathrm{e}^{+} \mathrm{e}^{-}$ algorithms are severally degraded
- The Valencia jet algorithm retains the natural inter-particle distance criterion for $\mathbf{e}^{+} \mathbf{e}^{-}$collisions and offers robust performance in the presence of the $\gamma \gamma \rightarrow$ hadrons background levels expected at lepton colliders
- Shown to work on several benchmark analyses. Pre-print out on the arXiv since last week: Boronat, Garcia,Vos, A new jet reconstruction algorithm for lepton colliders, arXiv:1404.4294
- Do try this at home! https:/ / fastjet.hepforge.org/trac/browser/contrib/contribs/ ValenciaJetAlgorithm
- Contact me if help is needed: Ignacio.Garcia@ific.uv.es

BACK-UP SLIDES

Algorithm parameters optimisation: R scan

The choice of parameters corresponds to the optimal setting determined in a scan over a broad range of parameters.

24

Algorithm parameters optimisation: β scan

IR-safety

A key requirement to jet algorithms

From Salam \& Soyez, JHEP 0705 (2007)
An infinitely soft particle cannot lead to a new (hard) [jet] being found...
...it makes no sense for the structure of multi-hundred GeV jets to change radically just because hadronisation, the underlying event or pileup threw a 1 GeV particle in between them.

The sequential recombination structure underlying the Valencia algorithm is generally thought to be intrinsically safe

A large number of standard IR-safety tests were performed on the FastJet plugin. All succeeded.

