#### Beam Parameters and Physics Reach

#### Mikael Berggren<sup>1</sup>

<sup>1</sup>DESY, Hamburg

#### 115th ILC@DESY General Project Meeting , DESY, Nov 2014



< ロ > < 同 > < 回 > < 回 >

#### Outline



Machine-design and Delivered beams



Beam conditions and the Detector

#### 3 Physics implications

- $\tilde{\tau}$  in SPS1' or STCx
- Higgs
- Polarisation and Near Degenerate ẽ

#### Conclusions

. . . . . . .

#### The ideal linear collider

- Exactly known initial  $e^+e^-$  state.
- Fully polarised beams.
- As many events that you need at any E<sub>CMS</sub>.
- Pure electron/positron beams.
- No background from the machine.
- No  $\gamma\gamma$  background ...

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### The real linear collider

- Beam energy has both initial and beam-beam induced spread.
- Low positron polarisation (~30 %), and < 100 % electron polarisation.
- Limited luminosity.
- Mixed lepton and photon beams.
- Huge number of low energy background particles from the machine.
- $\gamma\gamma$  background exists ...
- There is ISR ...

Machine-design and Delivered beams

### Elements of the real collider



We need electrons and positrons:

- Electron source.
- Positron source.
- We need well defined beams:
  - Damping system.

We need high energy:

Main linac.

We need to get the beams to the detectors:

< ロ > < 同 > < 回 > < 回 >

- Beam delivery system.
- Final focus.

#### Elements of the real collider: Sources

#### Electron source.

 Polarised laser shining on photo-cathodes, specially designed to yield polarised electrons. Collect and pre-accelerate, then send to damping system.

#### Positron source

- High (> 150 GeV) energy electron beam passes an helical undulator acting as a FEL, to produce high intensity, polarisation and energy (~ 10MeV) photons. These hit a rotating target to produce e<sup>+</sup>e<sup>-</sup>e-pairs. Positrons are collected, pre-accelerated and sent to damping.
- Electrons are from the main beam → an additional energy dispersion, due to to the synchrotron radiation losses in the undulator.

- From the sources, the dispersion both in angle and energy are way to big.
- $\bullet\,$  Send beams (now at  $\sim$  5 GeV) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches  $\sim$  15 km to the start of the main linac after damping.

- From the sources, the dispersion both in angle and energy are way to big.
- Send beams (now at  $\sim$  5 GeV) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches  $\sim$  15 km to the start of the main linac after damping.

- From the sources, the dispersion both in angle and energy are way to big.
- Send beams (now at  $\sim$  5 GeV) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches  $\sim$  15 km to the start of the main linac after damping.

- From the sources, the dispersion both in angle and energy are way to big.
- Send beams (now at  $\sim$  5 GeV) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches  $\sim$  15 km to the start of the main linac after damping.

- Super-conducting RF cavities, 31.5 MV/m gradient, 9 cells.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 + a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !) ⇒ 132 912 cells...
- The linac needs power: Klystrons all along. How many particles one can get/time depends on how many of these one installs.



Mikael Berggren (DESY-HH)

ILC@DESY, Nov 2014 8 / 33

- Super-conducting RF cavities, 31.5 MV/m gradient, 9 cells.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 + a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !) ⇒ 132 912 cells...
- The linac needs power: Klystrons all along. How many particles one can get/time depends on how many of these one installs.



Mikael Berggren (DESY-HH)

ILC@DESY, Nov 2014 8 / 33

- Super-conducting RF cavities, 31.5 MV/m gradient, 9 cells.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 + a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !) ⇒ 132 912 cells...
- The linac needs power: Klystrons all along. How many particles one can get/time depends on how many of these one installs.



Mikael Berggren (DESY-HH)

- Super-conducting RF cavities, 31.5 MV/m gradient, 9 cells.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 + a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !) ⇒ 132 912 cells...
- The linac needs power: Klystrons all along. How many particles one can get/time depends on how many of these one installs.



Mikael Berggren (DESY-HH)

# Elements of the real collider: BDS and final focus

#### BDS:

- Last 2 km.
- Monitor and measure beam.
- Clean up beam-halo etc.
- Protect detectors.
- Anything the beam hits here will give secondaries (E<sub>beam</sub> is up to 500 GeV!), that might hit the detectors.

Final focus:

- Last 20 m.
- Focuses beams to few 100 nm horizontally, and few nm vertically



ILC@DESY, Nov 2014 9 / 33

# Elements of the real collider: BDS and final focus

#### BDS:

- Last 2 km.
- Monitor and measure beam.
- Clean up beam-halo etc.
- Protect detectors.
- Anything the beam hits here will give secondaries (E<sub>beam</sub> is up to 500 GeV!), that might hit the detectors.

Final focus:

- Last 20 m.
- Focuses beams to few 100 nm horizontally, and few nm vertically



< ロ > < 同 > < 回 > < 回 >

ILC@DESY, Nov 2014 9 / 33

# Elements of the real collider: BDS and final focus

BDS:

- Last 2 km.
- Monitor and measure beam.
- Clean up beam-halo etc.
- Protect detectors.
- Anything the beam hits here will give secondaries (E<sub>beam</sub> is up to 500 GeV!), that might hit the detectors.

Final focus:

- Last 20 m.
- Focuses beams to few 100 nm horizontally, and few nm vertically.



A B F A B F

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - .. get Compton-backscattered → photon component of beam, long tail to lower energies for the e<sup>±</sup>.
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam → e<sup>±</sup>-pairs.
- So, there will be a component of e<sup>±</sup> with the opposite charge to that of its parent beam.
- These gets de-focused: The pairs background.

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - .. get Compton-backscattered → photon component of beam, long tail to lower energies for the e<sup>±</sup>.
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam → e<sup>±</sup>-pairs.
- So, there will be a component of e<sup>±</sup> with the opposite charge to that of its parent beam.
- These gets de-focused: The pairs background.

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - .. get Compton-backscattered → photon component of beam, long tail to lower energies for the e<sup>±</sup>.
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam → e<sup>±</sup>-pairs.
- So, there will be a component of e<sup>±</sup> with the opposite charge to that of its parent beam.
- These gets de-focused: The pairs background.

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - .. get Compton-backscattered  $\to$  photon component of beam, long tail to lower energies for the  $e^\pm.$
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam  $\to e^\pm\text{-pairs}.$
- So, there will be a component of e<sup>±</sup> with the opposite charge to that of its parent beam.
- These gets de-focused: The pairs background.

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - .. get Compton-backscattered  $\to$  photon component of beam, long tail to lower energies for the  $e^\pm.$
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam  $\to e^\pm\text{-pairs}.$
- So, there will be a component of e<sup>±</sup> with the opposite charge to that of its parent beam.
- These gets de-focused: The pairs background.

The wrong-sign  $e^{\pm}$ :s gets a maximum kick if they are at the outer edge of the beam. The kick is independent of the (longitudinal) momentum of the particle.

 $p_T$  and  $\theta$  anti-correlates, and accumulate at the edge.

To study the effect, also draw the detector in these coordinates:

Place it at the  $p_T$ - $\theta$  corresponding to the  $p_T$  and  $\theta$  a particle should have to turn back at the radius and z of the detector.

The wrong-sign  $e^{\pm}$ :s gets a maximum kick if they are at the outer edge of the beam. The kick is independent of the (longitudinal) momentum of the particle.

 $p_T$  and  $\theta$  anti-correlates, and accumulate at the edge.

To study the effect, also draw the detector in these coordinates:

Place it at the  $p_T$ - $\theta$  corresponding to the  $p_T$  and  $\theta$  a particle should have to turn back at the radius and z of the detector.

The wrong-sign  $e^{\pm}$ :s gets a maximum kick if they are at the outer edge of the beam. The kick is independent of the (longitudinal) momentum of the particle.

 $p_T$  and  $\theta$  anti-correlates, and accumulate at the edge.

To study the effect, also draw the detector in these coordinates:

Place it at the  $p_T$ - $\theta$  corresponding to the  $p_T$  and  $\theta$  a particle should have to turn back at the radius and z of the detector.

イロト 不得 トイヨト イヨト ヨー ろくの

Example: Pairs in ILD, RDR nominal parameters. Generated with GuineaPig. 124000 particles/BX.



Mikael Berggren (DESY-HH)









Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L $\times$ cross-section.

- $L = N^2/(t \times A)$
- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)

So:  $L \propto P_{RF} n / AE_{cm}$ 

- A =cross-section of beams at IP  $\propto \sigma_X \times \sigma_y$
- $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L×cross-section.

- $L = N^2/(t \times A)$
- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)

#### So: $L \propto P_{RF}n/AE_{cm}$

- A =cross-section of beams at IP  $\propto \sigma_X \times \sigma_y$
- $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L $\times$ cross-section.

- $L = N^2/(t \times A)$
- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)

#### So: $L \propto P_{RF}n/AE_{cm}$

- A =cross-section of beams at IP  $\propto \sigma_X \times \sigma_y$
- $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L×cross-section.

• 
$$L = N^2/(t \times A)$$

- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)

#### So: $L \propto P_{RF}n/AE_{cm}$

- $A = \text{cross-section of beams at IP} \propto \sigma_X \times \sigma_y$
- $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L×cross-section.

- $L = N^2/(t \times A)$
- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)
- So:  $L \propto P_{RF}n/AE_{cm}$ 
  - $A = \text{cross-section of beams at IP} \propto \sigma_x \times \sigma_y$
  - $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time=L×cross-section.

- $L = N^2/(t \times A)$
- $N^2/t = (\text{particles in bunch})^2 \times (\text{number of bunches in train}) \times (\text{number of trains per second (="rep rate")}) = n^2 N_{bunch} f_{rep}$
- RF-power  $(P_{RF})=E_{cm}(nN_{bunch}f_{rep}) \times \eta$  ( $\eta$ = efficiency of the transfer from the RF-system  $\rightarrow$  beam)

So:  $L \propto P_{RF}n/AE_{cm}$ 

- $A = \text{cross-section of beams at IP} \propto \sigma_x \times \sigma_y$
- $\sigma \propto \sqrt{\epsilon\beta} = \sqrt{\epsilon_{norm}\beta/\gamma}$ .  $\epsilon$ =emittance,  $\epsilon_{norm}$ =normalised emittance=what the damping system achieves.  $\beta$ =focusing-power of the final focus system.
- Relative energy-loss due to beam-strahlung:  $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep  $\sigma_x + \sigma_y$  big.
- To get high L : $\sigma_x \times \sigma_y$  small.

Need a flat beam!  

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2)$$
  
 $n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}$ .

So:  

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{3/2})$$
  
or  
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{1/2})$   
or  
 $L \propto (n^2N_{bunch}f_{rep}) / (\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm}) / (\epsilon_{norm}\beta)$ 

- Relative energy-loss due to beam-strahlung:  $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep  $\sigma_x + \sigma_y$  big.

• To get high L : $\sigma_X \times \sigma_y$  small.

Need a flat beam!  

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2)$$
  
 $n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}$ .

So:  $L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{3/2})$ or  $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{1/2})$ or  $L \propto (n^2N_{bunch}f_{rep})/(\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm})/(\epsilon_{norm}\beta)$ 

- Relative energy-loss due to beam-strahlung:  $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep  $\sigma_x + \sigma_y$  big.
- To get high L : $\sigma_x \times \sigma_y$  small.

Need a flat beam!  

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2)$$
  
 $n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}$ .

So:  

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{3/2})$$
  
or  
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{1/2})$   
or  
 $L \propto (n^2N_{bunch}f_{rep})/(\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm})/(\epsilon_{norm}\beta)$ 

- Relative energy-loss due to beam-strahlung:  $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep  $\sigma_x + \sigma_y$  big.
- To get high L : $\sigma_x \times \sigma_y$  small.

Need a flat beam!  

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2)$$
  
 $n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}$ .

So:  

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{3/2})$$
  
or  
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{1/2})$   
or  
 $L \propto (n^2N_{bunch}f_{rep}) / (\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{om}) / (\epsilon_{porm}\beta)$ 

- Relative energy-loss due to beam-strahlung:  $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep  $\sigma_x + \sigma_y$  big.
- To get high L : $\sigma_x \times \sigma_y$  small.

Need a flat beam!  

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2)$$
  
 $n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}$ .

So:  

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{3/2})$$
  
or  
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{1/2})$   
or  
 $L \propto (n^2 N_{bunch}f_{rep}) / (\sigma_x \sigma_y) \propto (n^2 N_{bunch}f_{rep}E_{cm}) / (\epsilon_{norm}\beta)$ 

### Beam conditions and the Detector

#### RDR, SB2009 and TDR

During the SB2009 exercise, a number of studies were done comparing physics and detector implications of two different beam-parameter sets.

- The RDR parameters.
- The SB2009 parameters:
  - Half the number of bunches.
  - Recuperate the luminosity by more aggressive focusing.
  - In addition: modified positron-source, giving low luminosity below  $E_{cms} = 300 \text{ GeV}$

The TDR largely follows the SB2009, except that the loss of luminosity at low  $E_{cms}$  has been mitigated.

Here I will present some of the observations from the SB2009 exercise.

#### RDR and SB2009

- Twice as much beam-strahlung:
  - more overlaid tracks (real or fake)
  - Twice as much energy in BeamCal

At 500 GeV

- Total luminosity unchanged RDR  $\rightarrow$  SB2009 w TF, but reduced by %25 for SB2009 w/o TF.
- P(e<sup>+</sup>) goes from 33 % to 22 %.
- Incoming energy-spread grows from 0.16 to 0.21
- Luminosity within 1 % of nominal reduced from 0.83 to 0.72.

At 250 GeV

• Lumi reduced by a factor three.

### Beam-strahlung: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- The ILD VTX integrates of a certain time-window → Half as many BX:es overlaid in SB2009 wrt. RDR.
- $\Rightarrow$  The net effect is small.
- The SiD VTX time-stamps every BX → Twice as many background hits with SB2009.



### Beam-strahlung: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- The ILD VTX integrates of a certain time-window → Half as many BX:es overlaid in SB2009 wrt. RDR.
- $\Rightarrow$  The net effect is small.
- The SiD VTX time-stamps every BX → Twice as many background hits with SB2009.



### Beam-strahlung: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- The ILD VTX integrates of a certain time-window → Half as many BX:es overlaid in SB2009 wrt. RDR.
- $\Rightarrow$  The net effect is small.
- The SiD VTX time-stamps every BX → Twice as many background hits with SB2009.



- Only GP, but with crossing-angle and anti-DID.
- Both hit-densities (top) and energy-density (bottom) matters.
- The issue: can one still see a  $\approx$  250 GeV electron from a  $\gamma\gamma$  process over the pairs-background?



- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



→ ∃ → < ∃ →</p>

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



ILC@DESY, Nov 2014 20 / 33

A (10) A (10) A (10)

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



#### SB2009 and physics: $\tilde{\tau}$ in SPS1' or STCx

Small mass difference  $\tilde{\tau}$ -LSP ( $\sim$  10 GeV)  $\Rightarrow$  soft  $\tau$ :s. Potential effects:

- Decrease of P(e<sup>+</sup>): More background, less-signal for τ<sub>1</sub>
- Incoming energy-spread grows: end-point blurred.
- Luminosity within 1 % of nominal reduced: lower signal.
- Twice as much beam-strahlung:
  - more overlaid tracks (real or fake): Destroys  $\tau$  topology.
  - Twice as much energy in BeamCal: More  $\gamma\gamma$
- Higher probability for a  $\gamma\gamma$  event in the same BX as the physics event.
- (Total luminosity decrease for SB2009 w/o TF.)

#### SB2009 and physics: $\tilde{\tau}$ - finally selected events

|            | Events for end-point analysis     |                |        |                |                 |        |  |
|------------|-----------------------------------|----------------|--------|----------------|-----------------|--------|--|
| case       |                                   | $	ilde{	au}_1$ |        |                | $\tilde{	au}_2$ |        |  |
|            | SM                                | SUSY           | signal | SM             | SUSY            | signal |  |
| RDR        | 317                               | 998            | 10466  | 1518           | 241             | 1983   |  |
| SB09(TF)   | 814                               | 956            | 8410   | 1346           | 223             | 1555   |  |
| SB09(noTF) | 611                               | 717            | 6308   | 1009           | 167             | 1166   |  |
|            | Events for cross-section analysis |                |        |                |                 |        |  |
|            | $	ilde{	au_1}$                    |                |        | $	ilde{	au}_2$ |                 |        |  |
|            | SM                                | SUSY           | signal | SM             | SUSY            | signal |  |
| RDR        | 17.6                              | 47.7           | 2377   | 1362           | 33.7            | 1775   |  |
| SB09(TF)   | 17.6                              | 45.7           | 1784   | 1194           | 32.4            | 1366   |  |
| SB09(noTF) | 13.2                              | 34.3           | 1337   | 895            | 24.3            | 1025   |  |

イロト 不得 トイヨト イヨト 二日

#### SB2009 and physics: $\tilde{\tau}$ - SUSY model parameters

#### Errors on end-point (GeV)

| case      | # | $	ilde{	au}_1$ | $\tilde{	au}_2$ |
|-----------|---|----------------|-----------------|
| RDR       | 1 | 0.129          | 1.83            |
| +SB bck   | 2 | 0.144          | 2.02            |
| +SB ppol  | 3 | 0.153          | 2.06            |
| +SB spect | 4 | 0.152          | 2.10            |
| +SB noTF  | 5 | 0.179          | 2.42            |

#### Errors on cross-section (%)

|           |   |                | ( )            |
|-----------|---|----------------|----------------|
| case      | # | $	ilde{	au}_1$ | $	ilde{	au}_2$ |
| RDR       | 1 | 2.90           | 4.24           |
| +SB bck   | 2 | 3.03           | 4.72           |
| +SB ppol  | 3 | 3.31           | 4.77           |
| +SB spect | 4 | 3.52           | 5.09           |
| +SB noTF  | 5 | 3.79           | 5.71           |



#### SB2009 and physics: $\tilde{\tau}$ - SUSY model parameters

#### Errors on end-point (GeV)

| case      | # | $	ilde{	au}_1$ | $\tilde{	au}_2$ |
|-----------|---|----------------|-----------------|
| RDR       | 1 | 0.129          | 1.83            |
| +SB bck   | 2 | 0.144          | 2.02            |
| +SB ppol  | 3 | 0.153          | 2.06            |
| +SB spect | 4 | 0.152          | 2.10            |
| +SB noTF  | 5 | 0.179          | 2.42            |

#### Errors on cross-section (%)

|           |   |                | ( )            |
|-----------|---|----------------|----------------|
| case      | # | $	ilde{	au}_1$ | $	ilde{	au}_2$ |
| RDR       | 1 | 2.90           | 4.24           |
| +SB bck   | 2 | 3.03           | 4.72           |
| +SB ppol  | 3 | 3.31           | 4.77           |
| +SB spect | 4 | 3.52           | 5.09           |
| +SB noTF  | 5 | 3.79           | 5.71           |



#### SB2009 and physics: SM Higgs at 120 GeV



Mikael Berggren (DESY-HH)

Beam Parameters and Physics Reach

ILC@DESY, Nov 2014 24/33

#### SB2009 and physics: SM Higgs at 120 GeV



Topic: Model independent Higgs mass

Recoil mass measurement:

- Only reconstruct the  $Z \rightarrow \mu \mu$
- Using E & p conservation the Higgs mass can be measured from the recoil independent of the decay mode



#### SB2009 and physics: SM Higgs at 120 GeV



Mikael Berggren (DESY-HH)

Beam Parameters and Physics Reach

ILC@DESY, Nov 2014 24/33

Higgs

### SB2009 and physics: SM Higgs at 120 GeV

Compare recoil-mass peak obtainable with the same running-time at 250 or 350 GeV, for...

#### RDR

 Peak is broader at 350 GeV due to detector-resolution. Higher momentum gives higher error !



Higgs

### SB2009 and physics: SM Higgs at 120 GeV

Compare recoil-mass peak obtainable with the same running-time at 250 or 350 GeV, for...

- RDR
- Peak is broader at 350 GeV due to detector-resolution.
   Higher momentum gives higher error !



A B F A B F

Super-symmetry associates scalars to chiral (anti)fermions



What if  $M_{\tilde{e}_L} \approx M_{\tilde{e}_R}$ , so that thresholds can't separate  $e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L, \tilde{e}_R \tilde{e}_R$ and  $\tilde{e}_R \tilde{e}_L$ ?

Mikael Berggren (DESY-HH)

Beam Parameters and Physics Reach

Model: SPS1a' like, but:

 $M_{\tilde{e}_{L}}$  = 200 GeV and  $M_{\tilde{e}_{R}}$  = 195 GeV. Both decay 100 % to  $\tilde{\chi}_{1}^{0} e$ .

Even with  $P_{e^-} \ge +90\%$ , one can't disentangle the pairs  $\tilde{e}_L^+ \tilde{e}_R^-$  and  $\tilde{e}_R^+ \tilde{e}_R^-$ ': Ratio of the cross sections  $\approx$  constant.



Model: SPS1a' like, but:

 $M_{\tilde{e}_{L}}$  = 200 GeV and  $M_{\tilde{e}_{R}}$  = 195 GeV. Both decay 100 % to  $\tilde{\chi}_{1}^{0} e$ .

Even with  $P_{e^-} \ge +90\%$ , one can't disentangle the pairs  $\tilde{e}_L^+ \tilde{e}_R^-$  and  $\tilde{e}_R^+ \tilde{e}_R^-$ ': Ratio of the cross sections  $\approx$  constant.

#### Polarised positrons a must !



Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
  - Demand exactly two well identified electrons.
  - Reverse the τ̃ anti-SUSY background cut
  - Some cuts could be loosened
- Almost background-free !



Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
  - Demand exactly two well identified electrons.
  - Reverse the τ̃ anti-SUSY background cut
  - Some cuts could be loosened
- Almost background-free !



Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
  - Demand exactly two well identified electrons.
  - Reverse the τ̃ anti-SUSY background cut
  - Some cuts could be loosened
- Almost background-free !



The handle:

Opposite polarisation beams produces  $\tilde{e}$ :s in both s- and t-channel. Same polarisation produces  $\tilde{e}$ :s in t-channel only  $\Rightarrow$ 

#### Modification of $\Theta$ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates !  $\tilde{e}$ :s are heavy (and are scalars)  $\Rightarrow$  t- and s- channel kinematic distributions of the electrons are not very different. Need to reconstruct the  $\tilde{e}$  direction:

- 8 Unknown  $\tilde{\chi}_1^0$  momentum components
- Assume  $M_{\widetilde{e}}$  and  $M_{\widetilde{\chi}_{1}^{0}}$  known  $\rightarrow$
- 8 constraints (E and p conservation, 4 mass-relations)

The handle:

Opposite polarisation beams produces  $\tilde{e}$ :s in both s- and t-channel. Same polarisation produces  $\tilde{e}$ :s in t-channel only  $\Rightarrow$ 

Modification of  $\Theta$  distribution with changed positron polarisation

However, the effect is small since t-channel always dominates !  $\tilde{e}$ :s are heavy (and are scalars)  $\Rightarrow$  t- and s- channel kinematic distributions of the electrons are not very different.

Need to reconstruct the *e* direction:

- 8 Unknown  $\tilde{\chi}_1^0$  momentum components
- Assume  $M_{\widetilde{e}}$  and  $M_{\widetilde{\chi}_{1}^{0}}$  known  $\rightarrow$
- 8 constraints (E and p conservation, 4 mass-relations)

The handle:

Opposite polarisation beams produces  $\tilde{e}$ :s in both s- and t-channel. Same polarisation produces  $\tilde{e}$ :s in t-channel only  $\Rightarrow$ 

#### Modification of $\Theta$ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates !  $\tilde{e}$ :s are heavy (and are scalars)  $\Rightarrow$  t- and s- channel kinematic distributions of the electrons are not very different. Need to reconstruct the  $\tilde{e}$  direction:

- 8 Unknown  $\tilde{\chi}_1^0$  momentum components
- Assume  $M_{ ilde{\epsilon}}$  and  $M_{ ilde{\chi}_1^0}$  known ightarrow
- 8 constraints (E and p conservation, 4 mass-relations)








# SB2009 and physics: Polarisation and Near Degenerate $\tilde{\rm e}$

# Analyse assuming $100 \text{ fb}^{-1}$ for each of the polarisations configurations.



# Conclusions...

#### Machine-parameters:

- Depending on what is built in to the machine ( $P_{RF}$ ,  $f_{rep}$ ,  $N_{bunch}$ ,  $\delta_{BS}$ ...), luminosity scales differently with  $E_{cm}$ , but it's never constant.
- Different machine setups give different gives different luminosity scaling, different polarisation scaling, different energy within 1 % to nominal, different spread in E<sub>beam</sub>.

#### Lessons from $\tilde{\tau}$ :s:

- For "fragile" signals, beam-background influences signal directly.
- For any 'low Δ(*M*)(< 10 GeV) signal, beam-background should be taken into consideration when estimating γγ background.
- RDR  $\rightarrow$  SB2009: 15-20 % degradation (end-point and cross-section,  $\tilde{\tau}_1$  and  $\tilde{\tau}_2$  ).
- Half from the modifications of the positron source: Spread in Ecm, reduction in Pol(e<sup>+</sup>).

# Conclusions...

Machine-parameters:

- Depending on what is built in to the machine ( $P_{RF}$ ,  $f_{rep}$ ,  $N_{bunch}$ ,  $\delta_{BS}$ ...), luminosity scales differently with  $E_{cm}$ , but it's never constant.
- Different machine setups give different gives different luminosity scaling, different polarisation scaling, different energy within 1 % to nominal, different spread in E<sub>beam</sub>.

Lessons from  $\tilde{\tau}$ :s:

- For "fragile" signals, beam-background influences signal directly.
- For any ´low Δ(*M*)(< 10 GeV) signal, beam-background should be taken into consideration when estimating γγ background.
- RDR  $\rightarrow$  SB2009: 15-20 % degradation (end-point and cross-section,  $\tilde{\tau}_1$  and  $\tilde{\tau}_2$  ).
- Half from the modifications of the positron source: Spread in Ecm , reduction in Pol(e<sup>+</sup>).

### Conclusions

Lessons from SM Higgs:

- Results will not scale with cross-section if E<sub>cm</sub> changes: Detector resolution depends on energy, while beam energy spread doesn't.
   Lessons Degenerate ẽ:
  - There are physics that can't be done without positron polarisation.
  - In the studied case, going from 22 % to 60 % positron polarisation
    ⇔ 7.5 times more luminousity !

### Conclusions

Lessons from SM Higgs:

 Results will not scale with cross-section if E<sub>cm</sub> changes: Detector resolution depends on energy, while beam energy spread doesn't.

Lessons Degenerate ẽ:

- There are physics that can't be done without positron polarisation.
- In the studied case, going from 22 % to 60 % positron polarisation
  ⇔ 7.5 times more luminousity !

# Thank You !

Mikael Berggren (DESY-HH)

Beam Parameters and Physics Reach

ILC@DESY, Nov 2014

ヘロト ヘロト ヘヨト ヘヨト

33/33

-2