HIGGS SELF−COUPLING ANALYSIS WITH H→WW*

Masakazu Kurata

10/24/2014

STATUS

- Doing some studies
 - Kinematic fitter for ZHH \rightarrow (bb)(bb)(WW*) \rightarrow (bb)(bb)(l ν jj) process
 - Vertex mass recovery in LCFIPlus
 - Both topics have some progress after LCWS14
 - And, some extra studies

 Unfortunately, I can't attend next general physics meeting... So today I'll talk about what I would want to talk at general meeting (It takes some time)

KINEMATIC FITTER

TRYING KINEMATIC FITTER

- Determining the kinematics globally in the events
 - Distort the event kinematics to meet the constraint in specific process
 - Estimate how much is a event likely to the specific process?
 - Mass resolution will be improved by using χ^2 minimization
- First trial: ZHH→(bb)(bb)(WW*)→(bb)(bb)(l ν jj) kinematic fitter
 - Constraints:

$$m(bb) = m_Z$$

$$Max(m(lv), m(jj)) = m_W$$

$$m(bb) = m(lvjj)$$

$$E(H) + E(Z) + E(jj) + E(lv) = \sqrt{s}$$

$$\overrightarrow{p_H} + \overrightarrow{p_Z} + \overrightarrow{p_{jj}} + \overrightarrow{p_{lv}} = \vec{0}$$

$$p_v = E_v$$

• There was bug in code - fix it

JET ENERGY RESOLUTION - B JET

- Most critical factor which degrades mass resolution is jet energy resolution
 - So it is necessary to include this effect into Kinematic fitter
 - Jet energy resolution itself has energy dependence of jets

JET ENERGY RESOLUTION - JET FROM W BOSON

- Most critical factor which degrades mass resolution is jet energy resolution
 - So it is necessary to include this effect into Kinematic fitter
 - Jet energy resolution itself has energy dependence of jets

PERFORMANCE CHECK • Higgs mass($H \rightarrow bb$) & Z mass distribution

Mass resolution is going better! \rightarrow promising

00

300

m(lvjj) (GeV/c²)

PROSPECTS

- All the mass resolutions become better using Kinematic fitter
 - So far, Kinematic fitter is working good
 - But, m(l ν jj) resolution improvement is enough?
 - Neutrino energy correction is the key for m(l ν jj) resolution
- o All the neutrinos in the event should be checked for better m(l ν jj) resolution
 - Soft neutrinos affect on angular resolution of jets and missing momentum itself?
 - If so, it is necessary to include angular resolution effect into Kinematic fitter
 - It is possible, but very hard work…
- Need to check using background processes
 - Especially, comparison to ZZH is important
- o Kinfit for ZHH→(bb)(bb)(WW*)→(bb)(bb)(jjjj) process

TRACK ENERGY CORRECTION

- Track energies are corrected before jet clustering
 - Energy correction using ParticleID
 - Method: Durham
 - Corrected energy is used when calculating y value
 - Clustering will be changed slightly, especially low momentum track clustering → how is the invariant mass?
 - Sample: qqHH→(qq)(bb)(bb)
 - Looks almost same as previous result effect is small, but going to good direction!

STATUS

 Construction of vertex mass recovery module in LCFIPlus is completed

- Need debug
- Start to look at the recovered vertex mass distribution
- Will be able to show some plots in next meeting…

FIRST TRIAL OF VERTEX CHARGE STUDY

VERTEX CHARGE STUDY

- First check of vertex charge
 - Using b vtx: 1vtx in bjet
 - Calculate simple track charge sum and track energy weighted charge sum
 - Check how much the vertex charge agrees with its original b quark charge
 - So far, using vertices with at least 1 Kaon track → tag particles using particle ID

• To be honest, I have no idea about the strategy. So please help!

FIRST TRIAL OF 2 TRACK CASE • K+ π candidates – vertices are almost neutral!

• Vertex charge

Advantage of particle ID

• In K+ π case, does Kaon carry b quark charge?

Higgs Coupling Analysis

- Try to check the relation between Kaon charge and b quark charge
- Kaon charge

Efficiency

Better, but more idea is necessary

FIRST TRIAL OF 3 TRACK CASE – GOOD CASE • K+ π + π case: efficiency

4 TRACK CASE - GOOD CASE

• K+ π + π + π : efficiency

• Even num. of track case is better than odd num. of track case?

4 TRACK CASE - GOOD CASE

• K+K+K+ π : efficiency

o If num. of Kaon is odd, Kaon charge sum looks good information

2.5

category

DIFFICULT?

• If num. of Kaons on vertices is even…

• K+K case: efficiency

o Looks hopeless…

• Good idea?

PROBLEMS AND PROSPECTS

- In some cases, Kaon charge on vertex looks good information to identify original b quark charge
 - But, very specific so far, seems just odd num. of Kaon on vertices
 - Even num. of tracks on vertices can identified b quark charge better than odd num. of tracks case – why?
 - How is the other case? e.g.) K+K, $\pi + \pi$, K+K+ π etc.
 - But symmetric cases(e.g. K+K, K+K+ π + π , K+K+K+K etc.) seem hopeless…
 - Efficiency is still not enough need some idea
 - Track quality cut is necessary?
 - MVA will be necessary finally
- Of course, need to check other caseWhat is next?
- Can the b quark charge estimator be constructed?
 - A lot of help necessary!