Status of BR($h \rightarrow \tau^+ \tau^-$) Study

Shin-ichi Kawada Hiroshima University

Review of Current Numbers (1)

250 GeV 250 fb ⁻¹	qqh	vvh	e ⁺ e ⁻ h	$\mu^+\mu^-h$		
$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	3.4%	46.0%	16.1%	14.7%		
Status	DONE	Extrapolation from M _h = 120 GeV Cut-based only				
now working						

Review of Current Numbers (2)

Today's topic: 250 GeV $v\bar{v}h$

 Second largest number of signal at 250 GeV, but background rejection is very difficult.

-2f: ττ

- 4f: $\nu\nu\tau\tau$ (irreducible), $\nu\nu\ell\ell$

 $-\operatorname{aa}_2f:\gamma\gamma\to\tau\tau,\gamma\gamma\to\ell\ell$

 These background processes are like the irreducible processes because of neutrinos and initial photons.

Event Reconstruction

Tau reconstruction clustering based on tau mass

Most energetic τ^+ and τ^- are combined as a Higgs boson

Cut-based Analysis

Cut 0 (pre-cuts): # of $\tau^+(\tau^-) \ge 1$, # of tracks <= 6 Cut 0.5 (basic cuts): $5 < E_{vis} < 150, 5 < M_{vis} < 135,$ $M_{inv} > 75, P_t > 5$, thrust > 0.7, $|\cos \theta_{miss}| < 0.99, (\text{# of } E > 3 \text{ tracks}) >= 1,$ (# of $P_t > 2 \text{ tracks}) >= 1$

Cut 1: $M_{vis} < 105$ Cut 2: $M_{inv} > 120$ Cut 3: $P_t > 25$ Cut 4: thrust > 0.82 Cut 5: $|\cos \theta_{miss}| < 0.94$ Cut 6: $M_{\tau\tau} > 10$ Cut 7: $-0.89 < \cos \theta_{\tau\tau} < -0.52$ Cut 8: $\cos \theta_{acop} < 0.99$ Cut 9: $\log_{10} |\min d_0 sig| > 0.3$

pre-cuts: requiring signal topology basic cuts: very loose cuts, but quite significant to suppress trivial process

Example Plot (Basic Cuts)

Example Plot (Final Discriminant)

表 1 250 GeV $\nu \overline{\nu} h$ Cut-based 解析の cut table。 eX は ×10^X を表す。

	$\nu \overline{\nu} h$	$\nu \overline{\nu} h$	$q\overline{q}h$	2f	4f	1f_3f	aa_2f	sig.
	$h \to \tau \tau$	$h\not\to\tau\tau$	$\ell\ell h$					
None	1212	1.817e4	6.043e4	2.863 e7	1.021 e7	2.305e8	1.634e8	0.0582
pre-sel	1093	465.6	594.8	7.005e6	1.226e6	2.768e7	1.062e8	0.0917
basic	1072	439.8	145.6	6.001e5	6.058e5	8.681e5	2.263 e7	0.216
$M_{\rm vis}$	990.6	429.0	69.57	4.834e5	$4.607\mathrm{e}5$	8.029e5	2.262 e7	0.201
$M_{\rm inv}$	958.3	417.6	61.73	4.266e5	3.443e5	7.649e5	2.262 e7	0.195
P_t	866.1	368.5	60.36	3.391e5	3.141e5	9.862e4	1.904e5	0.892
thrust	856.9	282.6	35.79	2.635e5	2.642e5	7.605e4	1.748e5	0.970
$\theta_{ m miss}$	823.0	275.5	33.60	2.127e5	2.463e5	3.083e4	8.027 e4	1.09
$M_{\tau\tau}$	810.4	248.0	32.38	2.080e5	2.395e5	2.505e4	7.868e4	1.09
$\theta_{\tau\tau}$	639.2	32.07	15.51	1.802e4	1.109e5	5443	1.311e4	1.66
$\theta_{\rm acop}$	596.2	30.27	14.31	2314	1.045e5	4544	1793	1.77
d_0 sig	378.3	3.314	6.980	1216	2.407e4	508.3	367.2	2.32

$2.32\sigma \leftrightarrow 43.1\%$

relatively ~7% better than previous analysis

TMVA Analysis

13 parameters

- $\begin{array}{l} -M_{\mathrm{vis}}, M_{\mathrm{inv}}, E_{\mathrm{vis}}, P_t, \, \mathrm{thrust,} \, \cos \theta_{\mathrm{miss}}, \, \# \, \mathrm{of} \, E > 5 \\ \mathrm{tracks,} \, \# \, \mathrm{of} \, P_t > 5 \, \mathrm{tracks,} \, M_{\tau\tau}, \, E_{\tau\tau}, \, \cos \theta_{\tau\tau}, \\ \cos \theta_{\mathrm{acop}}, \, \log_{10} | \min d_0 \mathrm{sig} | \end{array}$
- used the file which applied pre-cuts and basic cuts
- tried BDT and BDTG in TMVA
 - still working, need time to optimize training parameters...
 - must be better than 43.1%, expecting ~30% level

Results

250 GeV 250 fb ⁻¹	qqh	vvh	e+e-h	$\mu^+\mu^-h$	
$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	3.4%	43.1% Cut-based	16.1%	14.7%	
Status	DONE	TMVA running (will be ~30%?)	Extrapolation from $M_h = 120 \text{ GeV}$ Cut-based only NEXT WORKS		

Additional Challenge

- Try to get Higgs mass with using an approximation.
- I tried collinear approximation like approximation.

Collinear Approximation

- We assume following...
 - 1. visible tau decay products and invisible products are collinear
 - 2. there are no neutrinos except from tau decay
- In $v\bar{v}h$, we can't use this approximation due to additional neutrinos.

Approximation This Time Tried

- I assume following...
 - 1. visible tau decay products and invisible products are collinear
 - 2. set the total invariant mass of decay products in 1. to tau mass (1.778 GeV)
 - I can get 4-momentum of neutrino(s) from tau decay by approximation.
- I applied this approximation to τ^+ and τ^- , and get Higgs mass(energy).

Plots From Approximation
after pre-cuts & basic cuts $E_{app}(E_h)$ $M_{app}(M_h)$

no peaks, long tails...

Plots From Approximation
same plot but in wider range $E_{app}(E_h)$ $M_{app}(M_h)$

applying cuts from higher region doesn't make sense

What a dirty distribution...

maybe need to check/develop in each tau decay mode to get better results in this approximation...

If possible, I want to use better approximation in 500 GeV $v\bar{v}h$... because it has the largest number of signal events.

Summary

- The background rejection for vvh signal is very difficult due to lots of neutrinos and initial photons.
- Contribution of 250 GeV $\nu \bar{\nu} h$ looks small, expecting $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)} \sim 30\%$ level.
- First approximation trial gives me dirty things. If possible, I want to use better approximation especially in 500 GeV $v\bar{v}h$.
- Next: 250 GeV $\ell^+\ell^-h$, then 500 GeV