branching ratio study of ${\rm H} \rightarrow \gamma \gamma$, ${\rm H} \rightarrow \mu \mu$

C. Calancha

General Meeting

November 1st, 2014

C. Calancha (KEK)

 ${\sf BR}\,{
m H} o \gamma\gamma$, ${
m H} o \mu\mu$

November 1st, 2014

• Introduction.

- Status Rare Decays.
- Conclusion.

- Hope you enjoyed a nice Halloween night.
- I was very busy writting slides for you.

C. Calancha (KEK)

 ${\sf BR}\,{
m H} o \gamma\gamma$, ${
m H} o \mu\mu$

Not Active in Analysis in a While

• Other Activities took 100% of my time.

Well, not exactly like in the picture...

C. Calancha (KEK)

BR H $\rightarrow \gamma \gamma$, H $\rightarrow \mu \mu$

Very Busy as to Improve Previous Results

• Other Activities took 100% of my time.

- hardware: FPCCD, beam test.
- software: cut table tools, ilc-xsec-db.
- detector optimization: single γ resolution impact on BR.

Instead of present new result its time to summarize what has been done.

Branching Ratio Measurements

- Studying the Higgs properties important part of the ILC physics programme.
- Mass of $\approx 125 \text{ GeV/c}^2 \rightarrow$ we are sensitive to many H decays.
 - Makes possible to test the linear coupling mass relation.
 - Makes possible to study rare Higgs decays via loop.
 - Even if no new heavy particles are observed, they will affect the branching fraction of these rare decays.

 $H \rightarrow \mu \mu$

• My first Analysis at linear colliders.

LC-REP-2013-006

 ${\rm H} \to \gamma \gamma$

 ${\bf BR}\:{\rm H}\to\gamma\gamma$, ${\rm H}\to\mu\mu$

external Z in the left hand plot decaying to: ${\rm Z} \to l^+ l^-$, ${\rm Z} \to \nu \bar{\nu}$, ${\rm Z} \to q \bar{q}$

$Br(H \rightarrow \gamma \gamma) = 0.228$ %

- Main Background: $qq\gamma\gamma$, $\nu\nu\gamma\gamma$
 - High statistics samples generated, simulated, reconstructed with same tools as DBD samples.
- σ(mainback)/σ(signal)
 - 1000 GeV: \approx 50(= 44/0.9) ($\nu \bar{\nu}$ H).
 - 500 GeV: $\approx 110 (= 42/0.39) (\nu \bar{\nu} H)$.

Presented at LCWS13 (*)

•
$$\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}$$
: 18.9 % at 500 GeV (500 fb⁻¹)

• $\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}$: 7.4 % at 1000 GeV (1000 fb⁻¹).

• Both numbers refers to $\nu \bar{\nu} H$. (**)

(*) See slides here

(**) Although preliminary results for other energies exists, only listed analysis presented out of our group.

Results not as impressive as these (room for improve):

Next Step

Constraints

- Currently i can work \lesssim 30 on analysis.
 - It could be less if i join systematics task force.
- No time to cover all energies with all Z modes.
- Write documentation of analysis also very important and time consuming.

A realistic goal

- The most important is cover machine design scenario: 500 GeV.
- 500 GeV with $q\bar{q}H$, $\nu\bar{\nu}H$.
 - Analyze these channels.
 - Improving $\nu \bar{\nu} H$.
 - qqH new.
 - prepare detailed documentation.

- Are you too busy to improve?
- What about H $\rightarrow \mu\mu$ at 500 GeV? (considering staging C-500 slides 8-9 on Fujii-san todays report).
 - If would considered if people really interested.

C. Calancha (KEK)

BR $ext{H}
ightarrow \gamma \gamma$, $ext{H}
ightarrow \mu \mu$

Rare Decays Analyzed

- $H \rightarrow \mu\mu$ at 1000 GeV.
 - LC note and DBD.
- $\nu \bar{\nu} H$, (H $\rightarrow \gamma \gamma$) at 500 and 1000 GeV.
 - Presented at LCWS13.
 - Comprehensible documentation desirable: just slides not easy to follow.

Outlook

- Considering other duties the best way to proceed is focus on 500 GeV.
- $\nu \bar{\nu} H$ and $q \bar{q} H(H \rightarrow \gamma \gamma)$ the priority.
 - With proper documentation.
- $H \rightarrow \mu\mu$ at 500 GeV could be done (if requested).
 - It would certainly rise the limit considering my other task/duties.

