Higgs BR study at 250 and 350 GeV

ILC Physics WG general meeting 2014. Nov. 01 H. Ono (NDU)

Higgs Branching ratios study

Higgs BRs measurement is an important task on ILC 250 GeV: Zh (Higgs-strahlung) dominant (σ_{Zh} xBR) 350 GeV: Zh + WW-fusion (σ_{Zh} + σ_{WW} xBR)

IIL

Higgs BR study in ILC

- Determine <u>absolute Higgs BR</u> (σ_{zh} model independent measurement)
- Complementary study with LHC in <u>Higgs hadronic decay channel</u>

116

BR	Mh	bb	СС	gg	τ	ww	ZZ	γγ	Ζγ	μμ
Pythia	120 GeV	65.7%	3.6%	5.5%	8.0%	15.0%	1.7%	0.3%	0.1%	0.03%
LHCXSWG	125 GeV	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.2%	0.2%	0.02%
Nov. 01 2014 ILC Physics WG general meeting										

Signal (M_h=125 GeV) and BGs

E _{cm}	250 GeV	350 GeV	Ecm
Signal	σ (-0.8,+0.3)	σ (-0.8, +0.3)	SM BGs
vvh	77.5	98.7	2f
qqh	210.2	138.9	4f
eeh	10.9	10.2	6f
μμh	10.4	6.9	1f_3f
ττh	10.4	6.9	aa_2f/4
Total	319.4	261.5	tt

	250 GeV (250 fb ⁻¹)	350 GeV (330 fb ⁻¹)
tt	None	e 827.3
aa_2f/4f	5.8x10 ⁵	⁵ 9.6x10 ⁵
1f_3f	1.3x10 ⁶	⁵ 1.6x10 ⁶
6f	Not considered	1.4x10 ²
4f	4.1x10 ⁵	⁵ 3.1x10 ⁴
2f	1.2x10 ⁵	⁵ 7.2x10 ⁴

250 GeV

σ (-0.8,+0.3)

	250 GeV (250 fb ⁻¹)	350 GeV (330 fb⁻¹)
vvh	19,383	32,555
qqh	52,547	45,837
llh	7,931	7,910

	250 GeV (250 fb ⁻¹)	350 GeV (330 fb ⁻¹)		
BG all	5.1x10 ⁸	8.8x10 ⁸		

ilr

İİĿ

350 GeV

σ (-0.8, +0.3)

250 and 350 GeV analysis

Current template fitting

Apply 5,000 times template fitting Toy MC \rightarrow Extract accuracy of sigma X BR

$$\begin{split} \sigma BR(s) &= r_s \times \sigma BR^{SM}(s) \\ \frac{\Delta \sigma BR(h \to s)}{\sigma BR} &= \frac{\Delta r_s}{r_s}. \end{split}$$

İİL

$\Delta\sigma BR/\sigma BR$ results (M_h=125 GeV)

350 GeV vvh is still Zh and WW-fusion inclusive

Update results		250 GeV		350 GeV			
L (fb ⁻¹)	250 f	b ⁻¹ P(-0.8,	+0.3)	330 f	330 fb⁻¹ P(-0.8, +0.3)		
ΔσBR/σBR	bb	СС	gg	bb	СС	gg	
vvh	1.6%	14.8%	9.7%	1.2%	10.9%	6.7%	
qqh	1.6%	24.0%	18.4%	1.5%	15.0%	13.2%	
eeh	4.4%	57.4%	36.3%	6.5%	>100%	>100%	
μμh	3.4%	34.0%	22.3%	4.6%	65.7%	30.9%	
Combined	1.0%	11.6%	7.6%	0.9%	8.8%	5.0%	
Extrapolation	1.1%	8.0%	6.8%	0.9%	6.5%	5.2%	

Extrapolation only consider the signal difference between LOI and DBD sample $h \rightarrow cc$ channel is worse especially at qqh @250 GeV

Different template variables

qqh @ 250 GeV template samples

Difference on $h \rightarrow cc$ distribution

Missing mass input is under implemented by Felix

IİL

Update results with different definition

vvh + qqh combined results with new template definition

vvh, qqh combined	250 GeV	′ (250 fb ⁻¹)	350 GeV (330 fb ⁻¹)		
Flavor variable type	Current	$(x_1 + x_2)/2$	Current	$(x_1 + x_2)/2$	
h→bb	1.1%	1.1%	0.9%	0.9%	
h→cc	12.6%	11.3%	8.8%	7.9%	
h→gg	8.6%	7.7%	6.0%	5.4%	

Slightly better accuracies are obtained in both 250 and 350 GeV, vvh, qqh using flavor sum definition
→ Use this definition for updating results

kt clustering with qqh @ 250 GeV

Investigating the degradation of qqh at 250 GeV (h \rightarrow cc)

kt jet clustering is used to treat $\gamma\gamma \rightarrow$ hadron BG Test with R=1.5 \rightarrow Re-clustered as 4 jets

qqh @ 250 GeV	No Kt	Apply Kt
h→bb	1.6%	1.6%
h→cc	24.0%	24.1%
h→gg	18.4%	18.6%

No significant difference is observed for final result $\rightarrow \gamma\gamma \rightarrow$ hadron contribution looks small especially at 250 GeV

vvh WW-fusion @ 350 GeV

vvh WW-fusion analysis is progressed by Fexlix Muller Ecm=350 GeV, L=250 fb⁻¹?, P(-0.8, +0.3)

- Kt jet clustering with R=1.5, 4 jets \rightarrow dijet re-clustering
- Cuts are optimized to maximize the signal significance
- Apply BDT TMVA cuts to improve significance
- Apply flavor template fitting with b/c flavor tag (Missing mass fit is not yet implemented)

 \rightarrow Zh/WW-fusion inclusive result w/o missing mass information

From the LCWS14 updates,

first result is obtained with flavor template fitting

- $h \rightarrow cc$ looks worse from the extrapolation
- Number of generated signals and BGs are now compared
 → Luminosity looks different (250 fb⁻¹?), checking this point

Summary and next steps

- Higgs σ BRs are evaluated with M_h=125 GeV
- Other flavor definition is evaluated
 Better with sum definition for each channel
- kt clustering is tested
 No difference is observed at 250 GeV qqh
- Test with TMVA to improve significance
- Evaluate different polarization case
- Update 500 GeV analysis

BACKUP

vvh WW-fusion at 350 GeV

> BDT variables:

 All cut parameters, Longitudinal momentum, global cos(Θ), thrust, thrust axis, jet masses, jet momenta, jet angles

	aanditian		Cianal	Cianf
	condition	BG	Signal	Signi
Expected		15042827,7	24663,1	6,4
isolated leptons	#iso lep = 0	12579833,8	21924,6	6,2
Transverse P	240 > P _{t,vis} > 30	887408,9	18526,5	19,5
Visible Mass	135 > m _{vis}	277267,9	17636,8	32,5
Angle between jets	0.27 > cos a	147209,6	16411,2	40,6
# tracks > 1GeV	N _{chd} > 26	44616,3	11306,0	47,8
max. jet mass	$135 > M_{j,max} > 40$	26375,8	10166,5	53,2
Durham minus	Y ₁₂ > 0.05	24821,5	10117,7	54,1
BDT	BDT > -0.02	6777,3	9538,1	74,7
		1	1	
LOI Study		11092,0	9543,0	66,4

Felix Muller at LCWS14

Different Flavor Likeness Definitions

Simple mean tag value gives better results than the standard likeness definition

h->	Standard likeness	(x ₁ +x ₂)/2
bb	1.148+-0.013	1.135+-0.013
CC	15.35+-0.16	14.56+-0.16
gg	4.758+-0.052	4.694+-0.049

Felix Muller at LCWS14

Felix Müller | 07.10.2014 | Page 13

Extrapolated results (E_{cm}=250 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =250 GeV	M _h =120	M _h =120 GeV (L=250 fb ⁻¹)			GeV (L=2	250 fb⁻¹)
ΔσBR/σBR	bb	СС	gg	bb	СС	gg
vvh	1.7%	11.2%	13.9%	1.8%	12.9%	11.2%
qqh	1.5%	10.2%	13.1%	1.6%	11.8%	10.5%
eeh	3.8%	26.8%	31.3%	4.0%	31.4%	25.3%
μμh	3.3%	22.6%	23.9%	3.5%	26.3%	19.1%
Combined	1.0%	6.9%	8.5%	1.1%	8.0%	6.8%

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

Cross sections at M_h=120 and 125 GeV are almost comparable in LOI samples and new samples (Lumi linker difference suppress mass diff.)

Main contribution comes from BR difference between M_h=120 and 125 GeV

Extrapolated results (E_{cm}=350 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =350 GeV	M _h =120 GeV (L=250 fb ⁻¹)			M _h =125 GeV (L=330 fb ⁻¹)		
ΔσBR/σBR	bb	СС	gg	bb	сс	gg
vvh	1.4%	8.6%	9.2%	1.3%	8.9%	6.6%
qqh	1.5%	10.1%	13.7%	1.4%	10.3%	9.7%
eeh	5.3%	30.5%	35.8%	5.1%	31.8%	25.8%
μμh	5.1%	30.9%	33.0%	4.9%	31.8%	23.5%
Combined	1.0%	6.2%	7.3%	0.9%	6.5%	5.2%

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

BR, Luminosity, and σ are different

Cross section120 GeV125 GeVννh105.2 fb98.7 fbqqh144.4 fb138.9 fbeeh11.0 fb10.2 fbμμh7.2 fb6.9 fb

vvh analysis procedure (H.Ono)

Apply **forced two-jet clustering** after the LCFIPlus vertex tag

qqh analysis procedure

Apply forced four-jet clustering and select minimum x² jets pair

IIL

ee/µµh analysis procedure

Select di-lepton, then apply forced two-jet clustering

μ/e selection

10<E_{PFO}<100 GeV @250 GeV (10<E_{PFO}<160 GeV @350 GeV)

Calorimeter Edep information

- $E_{ecal}/E_{total} < 0.5, E_{total}/P < 0.4 (\mu)$
- $E_{ecal}/E_{total} > 0.9, 0.7 < E_{total}/P < 1.2$ (e)

Require track from IP

• σ_{d0} , σ_{z0} , σ_{r0} If # of candidates greater than two, select lepton pair whose mass as close as Z mass

eeh: Signif = 16.9, Eff = 44.1% μμh: Signif = 25.1, Eff =60.8%

ILC Physics WG general meeting

- 1. # of e/ μ candidate >= 2
- 2. Selected isolated leptons = 2
- 3. E_{vis}>200 GeV
- 4. NPFOs > 30
- 5. Thrust>0.8 (Thrust<0.8 at 350 GeV)
- 6. |cosθ_z|<0.9
- 7. 70<M_{II}<110 GeV
- 8. 100<M_{jj}<150 GeV
- 9. 120< M_{recoil} < 160 GeV

$\Delta\sigma BR/\sigma BR$ results (M_h=125 GeV)

350 GeV vvh is still Zh and WW-fusion inclusive

Update results	250 GeV			350 GeV			
L (fb ⁻¹)	250 fl	250 fb ⁻¹ P(-0.8, +0.3)			330 fb ⁻¹ P(-0.8, +0.3)		
ΔσBR/σBR	bb	СС	gg	bb	СС	gg	
vvh	1.6%	14.8%	9.7%	1.2%	10.9%	6.7%	
qqh	1.6%	24.0%	18.4%	1.5%	15.0%	13.2%	
eeh	4.4%	57.4%	36.3%	6.5%	>100%	>100%	
μμh	3.4%	34.0%	22.3%	4.6%	65.7%	30.9%	
Combined	1.0%	11.6%	7.6%	0.9%	8.8%	5.0%	
Extrapolation	1.1%	8.0%	6.8%	0.9%	6.5%	5.2%	

- eeh @ 350 GeV only ~10 events remains with $h \rightarrow$ cc samples
- Extrapolation only consider the signal difference between LOI and DBD sample