Application of Matrix Element Method

Junping Tian, Keisuke Fujii (KEK)

Nov. 1 @ 39th General Physics Meeting of ILC Subgroup

recent development: matrix element method (approach the true likelihood of each event)

- @ ILC: well defined initial states, precisely measured final states, MEM perfectly fits for precision measurement
- MEM tools for full simulation released with latest ilcsoftv01-17-06: Physsim-v00-01
- basic verification done
- principle demonstrated in first application for e+e- —> eeH via
 ZZ-fusion
- main focus now is to apply for other major Higgs measurement (today for recoil mass)

reminder: verification of calculated matrix element

(ZHH events)

original events

weighted by

φ_F: azimuthal angle defined in Z rest frame of fermion from Z—>ff

first application: e+e- -> e+e-H

principle demonstrated: physicist .vs. statistician

signal: eeH via ZZ-fusion; background: eeH via ZH

apply for more critical measurement

recoil mass analysis

- momentum of muon are well measured
- since ECM is well defined, momentum of Higgs can be well determined as well
- therefore matrix element can be precisely calculated without assuming any Higgs decay!

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}}$$

matrix element: reconstructed .vs. truth

(step-by-step test: samples are generated w/o ISR and beam strahlung)

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}} \qquad M = M(\mu^{+}\mu^{-}Z) \frac{1}{p_{Z}^{2} - m_{Z}^{2} + im_{Z}\Gamma_{Z}}$$

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}} / M = M(\mu^{+}\mu^{-}Z) \frac{1}{p_{Z}^{2} - m_{Z}^{2} + im_{Z}\Gamma_{Z}}$$

(normalized to expected number of events w/ 250 fb⁻¹)

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}} / M = M(\mu^{+}\mu^{-}Z) \frac{1}{p_{Z}^{2} - m_{Z}^{2} + im_{Z}\Gamma_{Z}}$$

only cut on recoil mass > 110 GeV applied, already very well separated

including everything: ISR + beam spectrum

including everything: ISR + beam spectrum

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}} / M = M(\mu^{+}\mu^{-}Z) \frac{1}{p_{Z}^{2} - m_{Z}^{2} + im_{Z}\Gamma_{Z}}$$

only cut on recoil mass > 110 GeV applied, already very well separated

(including everything; normalized to expected number of events w/ 250 fb⁻¹)

$$M = M(\mu^{+}\mu^{-}H) \frac{1}{p_{H}^{2} - m_{H}^{2} + im_{H}\Gamma_{H}} / M = M(\mu^{+}\mu^{-}Z) \frac{1}{p_{Z}^{2} - m_{Z}^{2} + im_{Z}\Gamma_{Z}}$$

ISR + BS significantly degraded the separation power against ZZ

proposal to remove ISR

- ☑ ISR enters detector: identification (see Tomita-san's study, eff ~ 90%)
- what if ISR goes to beam pipe? (dominant)

we can resolve it!

$$|P_{z}(\gamma)| = |P(\gamma)|$$

$$P_{t}(H) = P_{t}(Z)$$

$$P_{z}(H) = -(P_{z}(Z) + P_{z}(\gamma))$$

$$E(Z) + \sqrt{P_{t}^{2}(H) + P_{z}^{2}(H) + m^{2}(H) + |P(\gamma)|} = \sqrt{s}$$

$$P(\gamma) = \frac{s - 2\sqrt{s}E(Z) + m^{2}(H) - m^{2}(Z)}{2(P(Z) \pm (\sqrt{s} - E(Z)))}$$

summary and next step

- ME tools have been developed and verified by first look.
- ME indeed can be reconstructed very precisely at the ILC.
- selection will be much simplified using MEM.
- to use Higgs propagator, in principle we need know Higgs mass first, which can be obtained by fitting recoil mass (note: to get mass more cuts on decay part can be applied); to improve $\sigma(ZH)$ measurement would then be main purpose of using MEM.
- complete analysis is needed to incorporate MEM for recoil mass study,
 propose to be done by Watanuki-san, (including CP study)
- going to have a look at next application for Higgs self-coupling

back up

more potential applications:

recoil mass analysis

- momentum of muon are well measured
- since ecm is well defined, momentum of Higgs can be well measured as well
- hence matrix element can be well calculated without assuming any Higgs decay!

Higgs self-coupling

$$\frac{d\sigma}{dx} = B(x) + \lambda I(x) + \lambda^2 S(x)$$

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

what if we use ME as weighting?

What is Matrix Element (Amplitude)

(squared ~ differential cross section)

(technically, |ME|² is the weight of each phase space point)

tool to calculate ME - HELAS (one of many others)

original fortran version by H. Murayama, etc.; c++ version by K. Fujii

development of ME tools for physics analysis: status

(for full detector simulation, within Marlin framework)

- basic idea: provide some libraries to calculate ME for given processes,
 which can be directly used in analyses by just passing four momentum.
- core libraries implemented: HELLib (C++ HELAS, helicity amplitude subroutines for feynman diagrams).
- LCME (linear collider matrix element libs), so far major Higgs production implemented: LCMEZH, LCMENNH, LCMEEEH, LCMEZHH, LCMENNHH, LCMEEEZ.
- verified by using MC truth information.
- Physsim v1.0 released, available now on svn.
- typical way to use it: check out; compile; include libPhyssim.so in your \$MARLIN_DLL; using namespace lcme; follow example marlin processor (included in the package).

svn co https://svnsrv.desy.de/basic/physsim/Physsim/trunk

to be implemented: Detector Effect

- the four momenta we measured have resolution
 —> we need detector transfer function (jet energy resolution, momentum resolution, etc.)
 and integrate all possible truth four momenta.
- some four momenta can not be measured (missing neutrinos) —> integrate all possible truth four momenta.

$$L(\mathbf{p}_{i}^{\text{vis}}|\mathbf{a}) = \frac{1}{\sigma_{\mathbf{a}}} \left[\prod_{j \in \text{inv.}} \int \frac{d^{3}p_{j}}{(2\pi)^{3} 2E_{j}} \right] \left[\prod_{k \in \text{vis.}} \int \frac{d^{3}p_{k}}{(2\pi)^{3} 2E_{k}} W_{i}(\mathbf{p}_{i}^{\text{vis}}|p_{k}, \mathbf{a}) \right] |M(p_{j}, p_{k}; \mathbf{a})|^{2}$$

example core code to calculate matrix element

```
// Double Higgs Production Amplitude
HELFermion em(fK[0], kM e, fHelInitial[0], +1, kIsIncoming);
HELFermion ep(fK[1], kM e, fHelInitial[1], -1, kIsOutgoing);
HELScalar h1(fP[0]);
HELScalar h2(fP[1]);
HELFermion f (fP[2], fM[2], fHelFinal [2], +1, kIsOutgoing);
HELFermion fb(fP[3], fM[3], fHelFinal [3], -1, kIsIncoming);
Double t v = 2.*kM w/kGw;
Double t qhhh = -TMath::Power(fMass,2)/v*3.;
Double t gzzh = kGz*kM z;
Double t qzzhh = kGz*kGz/2.;
HELVector zf(fb, f, glz, grz, kM z, gamz);
HELVector zs(em, ep, glze, grze, kM z, gamz);
HELScalar hh(h1, h2, ghhh, fMass, 0.);
                                        // HHH self-coupling
HELVertex amp1(zs, zf, hh, qzzh);
HELVertex amp2(zs, zf, h1, h2, gzzhh); // ZZHH 4-point
HELVector vz1(zf, h1, gzzh, kM_z, gamz);
HELVertex amp3(zs, vz1, h2, gzzh);
                                        // double H-strahlung
HELVector vz2(zf, h2, gzzh, kM z, gamz);
                                        // double H-strahlung
HELVertex amp4(zs, vz2, h1, qzzh);
```

Complex t amp = amp1 + amp2 + amp3 + amp4;

example code in your marlin processor

```
// initialize LCMEZHH with Higgs mass of 125 GeV and beam
polarisations P(e-,e+) = (0.,0.)
  zhh = new LCMEZHH("LCMEZHH", "ZHH", 125., 0., 0.);
 // set mode of Z decay
  zhh->SetZDecayMode(5);
 // -----
 // calculate the matrix element
 // -----
 // put four-momenta of final states to an array
 TLorentzVector vLortzMC[4] = {lortzLep1MC, lortzLep2MC, lortzH1MC, lortzH2MC};
 // pass kinematics to ME object
 zhh->SetMomentumFinal(vLortzMC);
 // matrix element can be given for each combination of initial and final helicities
 Int t vHell[2] = \{-1, -1\};
 Int t vHellR[2] = \{-1,1\};
 Int t vHelRL[2] = \{1,-1\};
 Int t vHelRR[2] = \{1,1\};
 Double t dSigmaLL = zhh->GetMatrixElement2(vHelLL);
 Double t dSigmaLR = zhh->GetMatrixElement2(vHelLR);
 Double t dSigmaRL = zhh->GetMatrixElement2(vHelRL);
 Double t dSigmaRR = zhh->GetMatrixElement2(vHelRR);
 // if no combination of helicities specified, final combinations are summed
 // and initial combinations are weighted by beam polarisations
 Double t dSigma = zhh->GetMatrixElement2();
 // that's all need to do to get matrix elment for each event
```

verification

$$L(\mathbf{p}_{i}^{\text{vis}}|\mathbf{a}) = \frac{1}{\sigma_{\mathbf{a}}} \left[\prod_{j \in \text{inv.}} \int \frac{d^{3}p_{j}}{(2\pi)^{3} 2E_{j}} \right] \left[\prod_{k \in \text{vis.}} \int \frac{d^{3}p_{k}}{(2\pi)^{3} 2E_{k}} W_{i}(\mathbf{p}_{i}^{\text{vis}}|p_{k}, \mathbf{a}) \right] |M(p_{j}, p_{k}; \mathbf{a})|^{2}$$

- stdhep events are generated without any ISR and BS, helicity combinations of both initial and final states can be controlled.
- detector transfer function ($W(p_i | p_k, a)$) becomes a delta function, and no invisible variables. (test with MC information).
- ME calculated for each event in this way should be as same as the ME used in event generation (as event weights).
- to verify the calculated ME, if each event is weighted by (1./ | ME | ²), all variables should be uniformly distributed.