Charged Higgs search in Triplet Higgs model with $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{W H}$

November 1 ${ }^{\text {st }}, 2014$
Yuko Shinzaki
Jan strube, Akimasa Ishikawa, Keisuke Fujiia ${ }^{\text {a }}$
Shinya Kanemura ${ }^{\text {b }}$, Kei Yagyuc, Hitoshi Yamamoto
Tohoku univ., KEKa, Toyama univ. ${ }^{\text {b }}$, National Central univ. ${ }^{\text {c }}$

Introduction

Motivation

- In July, 2012, LHC experiments announced the discovery of a neutral Higgs boson. In the Standard Model this is a manifestation of a Higgs doublet field.
- Extensions of the Standard Model could have charged Higgs bosons in addition to the one that was discovered at the LHC.
- If charged higgs is light enough , one can search for charged Higgs with e+e- \rightarrow WH at 250 GeV . A tree level coupling of ZWH appears in triplet Higgs models which explain neutrino masses.
(Shinya Kanemura, Kei Yagyu, physical review D 83, 075018(2011))

$$
\mathcal{L}_{\mathrm{eff}}=g m_{W} f_{H W V} H^{ \pm} W_{\mu}^{\mp} V^{\mu}
$$

Charged Higgs search at the LHC

- The CMS experiment searches MSSM charged Higgs at $m_{\mathrm{m}}{ }^{\max }$ scenario.
- Charged Higgs mass limit > 150 GeV

Charged Higgs analysis

- In my study, charged Higgs mass is reconstructed from recoil mass against W boson, and measurement accuracy of the mass and cross section are evaluated.
- We want to find Higgs signal inclusively from recoil mass but it is very hard so we first try forced n -jet analysis.

recoil method

get W four momentum Pw , and calculate invariant mass from $\mathrm{Pe}+\mathrm{e}$ - and Pw . \rightarrow At ILC e+e-collider, initial state energy was known.

four momentum $\mathrm{Pe}+\mathrm{e}-$

Charged Higgs analysis

- In my study, charged Higgs mass is reconstructed from recoil mass against W boson, and measurement accuracy of the mass and cross section are evaluated.
- We want to find Higgs signal inclusively from recoil mass but it is very hard so we first try forced n-jet analysis.
$3 \mathrm{j}: \mathrm{H} \rightarrow$ taunu channel

This channel is easily analyzed.

6j: H \rightarrow WZ channel

At the LHC, this channel is buried in other hadronic events.

H \rightarrow taunu channel

Signal and Background

Signal status

- $\mathrm{Ecm}=250 \mathrm{GeV}$
- Integrated luminosity $=250 \mathrm{fb}^{-1}$
- Polarize

$$
P(e+, e-)=(-30 \%,+80 \%)
$$

- Charged higgs mass

$$
\mathrm{mH}_{\mathrm{H}^{ \pm}}=150 \mathrm{GeV}
$$

- Detector

ILD_01_v05 (DBD ver.)

- Form factor

$$
\mathrm{F}_{\mathrm{HWZ}}=1, \mathrm{~F}_{\mathrm{HWA}}=0
$$

Signal

		cross section (fb)	\# of event
Sig.	WH \rightarrow jjiv	107	26 k
	Di-jet	$46.2 k$	12 M
	evW \rightarrow evjj	445	110 k
SM	Zee \rightarrow jjee	300	74 k
	WW \rightarrow jjlv	758	190 k
BG	WW \rightarrow jijj	600	150 k
	ZZ \rightarrow jjll	467	120 k
	ZZ \rightarrow jijj	402	100 k
	ZZorWW \rightarrow jijj	565	140 k
	Zh \rightarrow ffh	205	51 k

3-jet reconstruction

- forced 3-jet analysis using Durham algorithm
- W boson is reconstructed by pairing di-jet which gives the smallest χ^{2}

$$
\chi^{2}=\left(\frac{M_{j}-m_{W}}{\sigma_{W}}\right)^{2} \quad \begin{gathered}
M_{j}: \text { mass of jet pair } \\
m_{W}: \text { mass of } \mathrm{W}(=80.0 \mathrm{GeV}) \\
\sigma_{W}: \text { mass resolution }(=4.8 \mathrm{GeV})
\end{gathered}
$$

- H mass is calculated by recoil mass method

$1^{\text {st }}$ cut (W mass \& recoil mass)

$$
70<\mathrm{Mw}<90(\mathrm{GeV})
$$

- different event from signal clearly ZZ \rightarrow jjjj, Di-jet, WW \rightarrow jijj, WW \rightarrow jjlv

others:
Zee \rightarrow jjee, WW \rightarrow jjjj
ZZ \rightarrow jjjj, ZZorWW \rightarrow jjjj $\mathrm{Zh} \rightarrow \mathrm{ffh}$

$1^{\text {st }}$ cut (W mass \& recoil mass)

- different event from signal clearly ZZ \rightarrow jjjj, Di-jet, WW \rightarrow jjjj, WW \rightarrow jjlv
$110<$ Mrec < $190(\mathrm{GeV})$

others :
Zee \rightarrow jjee, WW \rightarrow jijij
ZZ \rightarrow ijij, ZZorWW \rightarrow ijij $\mathrm{Zh} \rightarrow$ ff

$2^{\text {nd }}$ cut (total Pt) $3^{\text {rd }}$ cut (visible energy)

- the event not include neutrinos Di-jet, ZH \rightarrow ffh, ZZorWW \rightarrow jijj

Evis < 170 (GeV)

others :
Zee \rightarrow jjee, WW \rightarrow jjjj
ZZ \rightarrow jjjj, ZZorWW \rightarrow jjjj Zh \rightarrow ffh

$4^{\text {th }}$ cut (W production angle) \& $5^{\text {th }}$ cut

0.95 < $\cos ($ W production angle)|

- have peak forward, Di-jet, etc

others :
 Zee \rightarrow jjee, WW \rightarrow jjjj
 ZZ \rightarrow jjjj, ZZorWW \rightarrow jjjj
 Zh \rightarrow ffh

$$
140<\text { Mrec < } 160(\mathrm{GeV})
$$

- final selection, Z event,

Cut table

	WH	Di-jet	evW \rightarrow evjj	WW \rightarrow jijv	ZZ \rightarrow jill	others
no cut	26803	11553700	111356	189596	116797	518315
mw\&mrec	15809	1304890	23786	35738	28599	22220
pt	14627	30613	21994	32379	20977	8127
Evis	13417	9447	11427	21227	18535	4710
Wangle	12876	5368	10427	19448	17136	4506
mrec	9590	2048	3599	6352	4557	1983
		$\mathrm{S} / \mathrm{N}=0.00215 \rightarrow 0.517$				

efficiency $=35.8 \%$
significance $=57.18 \rightarrow$ statistic error 1.75%
(Ecm250 GeV, 250fb-1)
Significance $=\frac{N_{\text {signal }}}{\sqrt{N_{\text {signal }}+N_{b g}}}$

others :
Zee \rightarrow jjee
WW \rightarrow ijij
ZZ \rightarrow ijij
ZZorWW \rightarrow jijij
$\mathrm{Zh} \rightarrow$ ff

Recoil mass plot

signal definition

$70<\mathrm{Mw}<90$ (GeV)
$140<$ Mrec < 160 (GeV)
$15<\mathrm{Pt}(\mathrm{GeV})$
$170<$ Evis (GeV)
$0.95<\mid \cos (w$ production angle)|

	WH	Di-jet	evW \rightarrow evjj	WW \rightarrow jjlv	ZZ \rightarrow jjll	others
no cut	26803	11553700	111356	189596	116797	518315
after cut	9590	2048	3599	6352	4557	1983

significance $=57.18 \rightarrow$ statistic error $1.75 \%\left(\mathrm{Ecm}_{\mathrm{cm}} 250 \mathrm{GeV}, 250 \mathrm{fb}{ }^{-1}\right)$

Less model dependent analysis

- Previous analysis is model dependent.
- It was considered Higgs goes to taunu; including Evis and Pt cut .
\rightarrow We should do less model dependent analysis.
cut parameter
W mass
recoil mass
W production angle
visible energy
total Pt
- use only these three parameters for cut and optimize each cut values again.

Less model dependent analysis

efficiency $=38.2 \%$
signal definition
$70<\mathrm{Mw}<90(\mathrm{GeV})$
$140<$ Mrec < $160(\mathrm{GeV})$
$0.85<\mid \cos (w$ production angle)|

- There is a peak from di-jet around 160 GeV .
- It is the reason that candidate W which almost satisfies $\mathrm{E}_{\mathrm{cм}}-\mathrm{M}_{\mathrm{w}} \sim 170 \mathrm{GeV}$.
If E_{CM} is larger, we can separate signal and this peak.
significance $=19.44 \rightarrow$ statistical error 5.14\%
($\mathrm{Ecm}=250 \mathrm{GeV}, 250 \mathrm{fb}^{-1}$)

H \rightarrow WZ channel

Signal and Background

Signal status

- Ecm $=250 \mathrm{GeV}$
- Integrated luminosity $=250 \mathrm{fb}^{-1}$
- Polarize

$$
P(e+, e-)=(+30 \%,-80 \%)
$$

- Charged higgs mass

$$
\mathrm{mH}_{\mathrm{H}^{ \pm}}=150 \mathrm{GeV}
$$

- Detector simulator ILD_01_v05 (DBD ver.)
- Form factor

$$
\mathrm{F}_{\mathrm{HWZ}}=1, \mathrm{~F}_{\mathrm{HWA}}=0
$$

Signal

		cross section (fb)	\# of event
Sig.	$\underset{\rightarrow 6 j}{\mathrm{WH} \rightarrow \mathrm{WWZ}}$	105	26k
$\begin{aligned} & \text { SM } \\ & \text { BG } \end{aligned}$	Di-jet	46.2k	12M
	evW \rightarrow evjj	445	110k
	Zee \rightarrow jjee	300	74k
	WW \rightarrow jjlv	758	190k
	WW \rightarrow jijj	600	150k
	ZZ \rightarrow jill	467	120k
	ZZ \rightarrow jijj	402	100k
	ZZorWW \rightarrow jijj	565	140k
	Zh \rightarrow ff	205	51k
	WWZ	41.6	10k

6j reconstruction

- forced6-jet analysis using Durham algorithm
- selecting the jet pairs so that χ_{1}^{2} is minimized

$$
\chi_{1}^{2}=\left(p_{j 1}^{p a i r 1}+p_{j 2}^{p a i r 1}\right)^{2}+\left(p_{j 1}^{p a i r 2}+p_{j 2}^{p a i r 2}\right)^{2}+\left(p_{j 1}^{p a i r 3}+p_{j 2}^{p a i r 3}\right)^{2}
$$

$$
p_{j}: 3 \text { vector momentum }
$$

- find prompt W by minimizing χ_{2}^{2}

$$
\chi_{2}^{2}=\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2} \quad \begin{gathered}
m_{W}: \text { mass of } \mathrm{W}(=80.0 \mathrm{GeV}) \\
m_{H}: \text { mass of } H(=150 \mathrm{GeV}) \\
\sigma_{W}: \text { mass resolution }(=5.5 \mathrm{GeV}) \\
\sigma_{H}: \text { mass resolution }(=15 \mathrm{GeV})
\end{gathered}
$$

- get W mass and calculate recoil mass

W mass and recoil mass

- Complex hadronic final states lower kinematic energy \rightarrow large jet size
\rightarrow higher confusion between jets
- current selection needs improvement.
- Analysis at 350 GeV has easier jet reconstruction, clear separation between W and H thanks to larger boost.
$\rightarrow x^{2}$ definition is needed to optimize,
- check the MC particles and that angles are useful for X^{2}
- use 3 type χ^{2} definitions and get plots

MC particle

- Checking whether the daughters of W (not form H) are same hemisphere with it.

\# of daughter in same side with Wmc	1 (2 daughters are not in same side)			$\mathbf{2}$ (2 daughters are in same side)		
particles in same side with Wmc	2	3	4	3	4	5
other side with Wmc	4	3	2	3	2	1
\# of event	880	3703	883	1962	8192	1999
$\%$	5	21	5	11	46	11

When 2 daughters are in same side, there are also other particles.

- use these 3 type χ^{2};

$$
\chi^{2}=\sum_{\text {pair } 1,2,3}\left(\frac{\left|p_{j 1}\right|+\left|p_{j 2}\right|}{\sigma_{p}}\right)^{2}+\left(\frac{M_{p a i r 3}-m_{W}}{\sigma_{W}}\right)^{2}
$$

$$
\sigma_{W}: \text { mass resolution }(=5.5 \mathrm{GeV})
$$

$$
\sigma_{Z}: \text { mass resolution }(=4.8 \mathrm{GeV})
$$

$$
\sigma_{p}: \text { momentum resolution }(=4 \mathrm{GeV})
$$

$$
\sigma_{\cos \theta}: \cos \theta \text { resolution }(=0.01 \mathrm{GeV})
$$

(guess)

$$
\chi^{2}=\sum_{\text {pair } 1,2,3}\left(\frac{\left|p_{j 1}\right|-\left|p_{j 2}\right|}{\sigma_{p}}\right)^{2}+\sum_{\text {pair } 1,2,3}\left(\frac{\cos \theta_{j 1 j 2}+1}{\sigma_{\cos \theta}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2}
$$

$$
\begin{aligned}
& \chi_{1}^{2}=\left(\frac{M_{\text {pair } 1}-m_{Z}}{\sigma_{Z}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2} \\
& \chi_{2}^{2}=\left(\frac{M_{\text {pair } 2}-m_{W}}{\sigma_{W}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2}
\end{aligned}
$$

- take smaller one

$$
\chi^{2}=\sum_{\text {pair } 1,2,3}\left(\frac{\left|p_{j 1}\right|+\left|p_{j 2}\right|}{\sigma_{p}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2}
$$

recoil mass

angle between W and W_{mc}

$$
\chi^{2}=\sum_{\text {pair } 1,2,3}\left(\frac{\left|p_{j 1}\right|-\left|p_{j 2}\right|}{\sigma_{p}}\right)^{2}+\sum_{\text {pair } 1,2,3}\left(\frac{\cos \theta_{j 1 j 2}+1}{\sigma_{\cos \theta}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2}
$$

recoil mass

cos_theta $>0.9: 5557$
cos_theta $<0.9: 20793$

angle between W and $\mathrm{Wmc}_{\mathrm{mc}}$

$$
\begin{aligned}
& \chi_{1}^{2}=\left(\frac{M_{\text {pair } 1}-m_{Z}}{\sigma_{Z}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2} \\
& \chi_{2}^{2}=\left(\frac{M_{\text {pair } 2}-m_{W}}{\sigma_{W}}\right)^{2}+\left(\frac{M_{\text {pair } 3}-m_{W}}{\sigma_{W}}\right)^{2}
\end{aligned}
$$

recoil mass

cos_theta $>0.9: 6766$
cos_theta $<0.9: 19582$

angle between W and W_{mc}

Summary and plan

Summary

Charged higgs search at ILC 250 GeV

- 3 j analysis ...H \rightarrow taunu channel
- integrated luminosity $=250 \mathrm{fb}-1, \mathrm{mh}=150 \mathrm{GeV}$, form factor FHWZ = 1
- we can measure this signal with statistical error 1.75\%
- less model dependent analysis : statistical error 5.14\%
- 6 j analysis ... $\mathrm{H} \rightarrow \mathrm{WZ}$ channel
- we still optimizing this selection.

Plan

- 3j analysis...H \rightarrow taunu
- mh vs Fhwz limit
- 6 j analysis $\ldots \mathrm{H} \rightarrow$ WZ channel
- optimization of jet pairing and boson selection on going
- WWZ analysis at Ecm 350 GeV

10/31/2014 Yuko Shinzaki, The 39th general meeting @ KEK

Backup

Total cross section of e+e- \rightarrow WH \rightarrow jjtaunu channel

${ }_{160}^{180} \quad F_{H W Z}=1 F_{H W \gamma}=0$

- Ecm = 250 GeV
- Integrated luminosity $=250 \mathrm{fb}^{-1}$
- Polarize : P(e+, e-)
$$
=(-30 \%,+80 \%)
$$
- Charged higgs mass
$$
\mathrm{m}_{\mathrm{H}^{+}}=150 \mathrm{GeV}
$$
- Form factor : $\mathrm{F}_{\mathrm{HWZ}}=1, \mathrm{~F}_{\mathrm{HWA}}=0$
- beamstrahlung = 0
- bremsstrahlung $=0$
Ecm (GeV)

Total cross section of $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{WH} \rightarrow \mathrm{WWZ}$ channel

- Charged higgs mass $=150 \mathrm{GeV}$
- Ecm = 200-1500 GeV
- beamstrahlung $=0$
- bremsstrahlung = 0
- Form factor : $\mathrm{F}_{\mathrm{HWZ}}=1, \mathrm{~F}_{\mathrm{HWA}}=0$
- cross section $=284.1$ (fb)
at $\mathrm{Ecm}=250 \mathrm{GeV}$ $P(e-, e+)=(-80 \%,+30 \%)$

WWZ standard model BG

Grove 1

Multiplicity: 3 Resonances: 0 Log-enhanced: 0 Off-shell: 2 t-channel: 0

Grove 2
Multiplicity: 3
Resonances: 0
Log-enhanced: 1 Off-shell: 1
t-channel: 1

Grove 3

Multiplicity: 3
Resonances: 0
Log-enhanced: 1 Off-shell: 1
t-channel: 1

