

November 1st, 2014

Yuko Shinzaki

Jan strube, Akimasa Ishikawa, Keisuke Fujiia

Shinya Kanemura^b, Kei Yagyu^c, Hitoshi Yamamoto

Tohoku univ., KEK^a, Toyama univ.^b, National Central univ.^c

Introduction

Motivation

- In July, 2012, LHC experiments announced the discovery of a neutral Higgs boson. In the Standard Model this is a manifestation of a Higgs doublet field.
- Extensions of the Standard Model could have charged Higgs bosons in addition to the one that was discovered at the LHC.
- ► If charged higgs is light enough , one can search for charged Higgs with e+e-→WH at 250GeV. A tree level coupling of ZWH appears in triplet Higgs models which explain neutrino masses.

(Shinya Kanemura, Kei Yagyu, physical review D 83, 075018(2011))

$$\mathcal{L}_{\rm eff} = g m_W f_{HWV} H^{\pm} W^{\mp}_{\mu} V^{\mu}$$

Charged Higgs search at the LHC

- ► The CMS experiment searches MSSM charged Higgs at m^{max} scenario.
- Charged Higgs mass limit > 150 GeV

Charged Higgs analysis

- In my study, charged Higgs mass is reconstructed from recoil mass against W boson, and measurement accuracy of the mass and cross section are evaluated.
- We want to find Higgs signal inclusively from recoil mass but it is very hard so we first try forced n-jet analysis.

recoil method

get W four momentum Pw, and calculate invariant mass from Pe+e- and Pw. \rightarrow At ILC e+e- collider, initial state energy was known.

5

Charged Higgs analysis

- In my study, charged Higgs mass is reconstructed from recoil mass against W boson, and measurement accuracy of the mass and cross section are evaluated.
- We want to find Higgs signal inclusively from recoil mass but it is very hard so we first try forced n-jet analysis.

H->taunu channel

Signal and Background

Signal status

 Ecm = 250 GeV Integrated luminosity = 250 fb⁻¹ 			cross section (fb)	# of event
- Polarize	Sig.	WH → jjтv	107	26k
P(e+, e-) = (-30%, +80%)		Di-jet	46.2k	12M
 Charged higgs mass 		evW →evjj	445	110k
mн± = 150 GeV		Zee →jjee	300	74k
		WW → jjlv	758	190k
	SM BG	WW → jjjj	600	150k
	DG	ZZ →jjll	467	120k
- Charged higgs mass		ZZ → jjjj	402	100k
Signal		ZZorWW → jjjj	565	140k
z		Zh → ffh	205	51k
e+ H				

3-jet reconstruction

- Forced 3-jet analysis using Durham algorithm
- W boson is reconstructed by pairing di-jet which gives the smallest χ²

$$\chi^2 = (\frac{M_j - m_W}{\sigma_W})^2$$

 M_j : mass of jet pair m_W : mass of W(= 80.0GeV) σ_W : mass resolution(= 4.8GeV)

H mass is calculated by recoil mass method

1st cut (W mass & recoil mass)

► different event from signal clearly ZZ→jjjj, Di-jet, WW→jjjj, WW→jjlv

others : Zee →jjee, WW → jjjj ZZ → jjjj, ZZorWW → jjjj Zh → ffh

1st cut (W mass & recoil mass)

10/31/2014 Yuko Shinzaki, The 39th general meeting @ KEK

11

2nd cut (total Pt) 3rd cut (visible energy)

10/31/2014 Yuko Shinzaki, The 39th general meeting @ KEK

12

4th cut (W production angle) & 5th cut

Cut table

	WH	Di-jet	evW→evjj	WW→jjlv	ZZ→jjII	others		
no cut	26803	11553700	111356	189596	116797	518315		
mw&mrec	15809	1304890	23786	35738	28599	22220		
pt	14627	30613	21994	32379	20977	8127		
Evis	13417	9447	11427	21227	18535	4710		
Wangle	12876	5368	10427	19448	17136	4506		
mrec	9590	2048	3599	6352	4557	1983		
$S/N=0.00215 \rightarrow 0.517$ efficiency = 35.8%								
significance = 57.18 → statistic error 1.75% (E _{cm} 250 GeV, 250fb ⁻¹) Zee → jjee WW → jjjj ZZ → jjjj								
$Significance = \frac{N_{signal}}{\sqrt{N_{signal} + N_{bg}}}$ $ZZorWW \rightarrow jjjj$ $ZZorWW \rightarrow ffh$								

Recoil mass plot

signal definition

70 < Mw < 90 (GeV) 140 < Mrec < 160 (GeV) 15 < Pt (GeV) 170 < Evis (GeV) 0.95 < |cos(w production angle)|

	WH	Di-jet	evW→evjj	WW→jjlv	ZZ→jjII	others
no cut	26803	11553700	111356	189596	116797	518315
after cut	9590	2048	3599	6352	4557	1983

significance = 57.18 \rightarrow statistic error 1.75% (Ecm250 GeV, 250fb⁻¹)

Less model dependent analysis

- Previous analysis is model dependent.
 - It was considered Higgs goes to taunu; including Evis and Pt cut .
- \rightarrow We should do less model dependent analysis.

cut parameter

W mass recoil mass W production angle

visible energy total Pt use only these three parameters for cut and optimize each cut values again.

Less model dependent analysis

signal definition 70 < Mw < 90 (GeV) 140 < Mrec < 160 (GeV) 0.85 < |cos(w production angle)|

- There is a peak from di-jet around 160GeV.
- It is the reason that candidate W which almost satisfies
 E_{CM}-M_W ~ 170GeV.
 If E_{CM} is larger, we can separate signal and this peak.

significance = $19.44 \rightarrow$ statistical error 5.14% (Ecm=250GeV, 250fb⁻¹)

H→WZ channel

Signal and Background

Signal status

- Ecm = 250 GeV			cross section (fb)	# of event
 Integrated luminosity = 250 fb⁻¹ Polarize P(e+, e-) = (+30%, -80%) 	Sig.	$\begin{array}{l} WH \rightarrow WWZ \\ \rightarrow \mathbf{6j} \end{array}$	105	26k
		Di-jet	46.2k	12M
- Charged higgs mass		evW → evjj	445	110k
m _H ± = 150 GeV - Detector simulator		Zee →jjee	300	74k
ILD_01_v05 (DBD ver.)		WW →jjlv	758	190k
- Form factor	SM BG	$WW \rightarrow jjjj$	600	150k
$F_{HWZ}=1, F_{HWA}=0$		ZZ →jjII	467	120k
Signal		ZZ → jjjj	402	100k
		ZZorWW \rightarrow jjjj	565	140k
		$Zh \rightarrow ffh$	205	51k
W N N		WWZ	41.6	10k
e+ " "				

6j reconstruction

- forced6-jet analysis using Durham algorithm
- selecting the jet pairs so that χ_1^2 is minimized

$$\chi_1^2 = (p_{j1}^{pair1} + p_{j2}^{pair1})^2 + (p_{j1}^{pair2} + p_{j2}^{pair2})^2 + (p_{j1}^{pair3} + p_{j2}^{pair3})^2$$

 p_j : 3 vector momentum

20

▶ find prompt W by minimizing χ_2^2

$$\chi_2^2 = (\frac{M_{pair3} - m_W}{\sigma_W})^2$$

- m_W : mass of W(= 80.0GeV) m_H : mass of H(= 150GeV) σ_W : mass resolution(= 5.5GeV) σ_H : mass resolution(= 15GeV)
- ▶ get W mass and calculate recoil mass

W mass and recoil mass

- Complex hadronic final states lower kinematic energy → large jet size →higher confusion between jets
- current selection needs improvement.
- Analysis at 350 GeV has easier jet reconstruction, clear separation between W and H thanks to larger boost.

- $\rightarrow \chi^2$ definition is needed to optimize,
 - check the MC particles and that angles are useful for χ^2
 - use 3 type χ^2 definitions and get plots

MC particle

Checking whether the daughters of W (not form H) are same hemisphere with it.

22

# of daughter in same side with Wmc	1 (2 daughters are not in same side)			2 (2 daughters are in same side)			
particles in same side with Wmc	2	3	4	3	4	5	
other side with Wmc	4	3	2	3	2	1	
# of event	880	3703	883	1962	8192	1999	
%	5	21	5	11	46	11	

When 2 daughters are in same side, there are also other particles.

 χ^2

• use these 3 type χ^2 ;

$$\chi^{2} = \sum_{pair1,2,3} \left(\frac{|p_{j1}| + |p_{j2}|}{\sigma_{p}} \right)^{2} + \left(\frac{M_{pair3} - m_{W}}{\sigma_{W}} \right)^{2} \int_{\sigma_{z}}^{\sigma_{w}} \frac{m_{z} \operatorname{resolution}(z) + 2.5 \operatorname{GeV}}{\sigma_{z} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}$$

$$\sigma_{p} \operatorname{resolution}(z) + 4.8 \operatorname{GeV}}{\sigma_{p} \operatorname{resol$$

$$\chi_{1}^{2} = \left(\frac{\sigma_{Z}}{\sigma_{W}}\right)^{2} + \left(\frac{M_{pair3} - m_{W}}{\sigma_{W}}\right)^{2} + \left(\frac{M_{pair3} - m_{W}}{\sigma_{W}}\right)^{2}$$

 \blacktriangleright take smaller one

²⁴

25

26

Summary and plan

Summary

Charged higgs search at ILC 250 GeV

- ► 3j analysis ... H→taunu channel
 - integrated luminosity = 250 fb-1, mh = 150 GeV, form factor FHWZ = 1
 - we can measure this signal with statistical error 1.75%
 - less model dependent analysis : statistical error 5.14%
- ► 6j analysis …H→WZ channel
 - we still optimizing this selection.

Plan

- ► 3j analysis...H→taunu
 - mh vs Fhwz limit
- ▶ 6j analysis …H→WZ channel
 - optimization of jet pairing and boson selection on going
 - WWZ analysis at Ecm 350 GeV

10/31/2014 Yuko Shinzaki, The 39th general meeting @ KEK

separate signal and this peak.

28

Total cross section of $e+e-\rightarrow WH \rightarrow jjtaunu$ channel

Total cross section of $e+e-\rightarrow WH \rightarrow WWZ$ channel

WWZ standard model BG

