

Higgs Recoil Study for ILC

2014.11.5 ILD Analysis/Software Meeting Shun Watanuki @Tohoku University

Outline

Updates to the Higgs Recoil Study m_H = 125 GeV

Recoil Mass Study

- Estimate Higgs mass and cross section model independently.
 - → Check cut efficiency uniformity for each Higgs decay modes.
- Improve fitting method.
- Try to estimate mass precision by mass template method.
- Semi-model independent analysis is also tried.
- We compare different polarization scenarios.

CP-mixture Study

- CP-mixture η (coefficient of
 CP odd Higgs amplitude) can
 be measured from Z boson
 production angle.
- Check cosθ distribution by extrapolating number of events from recoil mass fitting, and look at the asymmetry.
- η should be calculated also by samples with anomalous coupling for ZZH.

Short Summary for

RECOIL MASS STUDY

Lepton Selections and BG Rejections

Production	Higgs mass	E _{CM} (GeV)	Integrated	Spin	Detector
Mode	(GeV)		Luminosity	Polarization	Simulation
e⁺e⁻->Zh-> μμh, eeh	125	250	250 fb ⁻¹	P(e⁻, e⁺) =(∓0.8, ±0.3)	ILD_01_v05 (DBD ver.)

- Lepton selection
 - di-lepton (μ ,e) selection : based on deposited energy in CAL
 - Good track selection : based on error in forward/barrel
 - Impact parameter (for di-muon) : to suppress μ from au decays
 - Bremsstrahlung recovery (for di-electron)

BG rejection

		<u>, , , , , , , , , , , , , , , , , , , </u>				<u>, , , , , , , , , , , , , , , , , , , </u>
P _{Tdl}	Transverse momentum of di-lepton	μμh	signal	II	llvv	llff
M _{dl}	Invariant mass of di-lepton	No Cut	2603	3.2M	507166	390041
acoplanarity	Balance of di-lepton azimuth	After Cut	1386	322	1479	1054
δP_{Tbal}	Balance b/w PT of di-lepton & photon	eeh	signal	II	llvv	llff
cos θ_{miss}	Angle of undetected particles	No Cut	2729	7.8M	520624	404279
M _{recoil}	Recoil mass	After Cut	1190	1496	2203	937
Likelihood	M_{dl} , $\cos\theta_{dl}$, P_{Tdl} , acolinearity		Shu	n Watanuki @ ⁻	Fohoku Univer	sity 4

Unbiased Selection

- δP_{Tbal} and $\cos \theta_{missing}$ cut has bias for Higgs decay modes especially h-> $\tau\tau$.
- To avoid this bias problem, some additional conditions are needed
- $\delta P_{Tbal} = P_{Tdl} P_{T photon}$ photon should satisfy ...
 - m_{2y} > 0.2 [GeV]
 - or Eγ > 60 [GeV]
- $\cos\theta_{\text{missing}}$: $\cos\theta$ of all PFOs
 - $|\cos\theta_{\text{missing}}| < 0.99$
 - or |cosθ_{z boson}|<0.8
- These additional condition avoid bias, but efficiency of BG rejection is sacrificed.

	bb	glu-glu	ττ	BG (II)
cosθ _{miss} <0.99	95.1%	92.8%	99.2%	41.1%
cosθ _{miss} <0.99 or cosθ <0.8	99.3%	99.1%	99.8%	74.6%

Signal Efficiency

After that, bias of signal efficiency for Higgs decay is eliminated.

H decay mode	μμh efficiency [%]	eeh efficiency [%]
bb	55.61	45.62
WW	55.39	44.95
gluglu	55.16	45.02
TT	55.42	44.49
CC	55.60	45.14
22	54.04	45.51

- Systematic error due to efficiency in decay modes is 3%.
- (If we could use the information on measured cross section for higgs decay modes, the error should be much smaller)

Fitting and Results

- Fitting functions
 - GPET x Novosibirsk for signal
 - 3rd order polynomial for BG
- Toy-MC study is performed: fixing parameters except mean of Gaussian, signal and BG yields, in order to estimate statistical error of mass and cross section.

μμh, eeh @250GeV		μμh		eeh	eeh		combined	
		Left	Right	Left	Right	Left	Right	
MI	cross section	4.2%	3.8%	6.0%	6.0%	3.4%	3.2%	
	mass [MeV]	34	31	231	214	34	31	
semi-MI	cross section	3.8%		5.6%		3.1%		
	mass [MeV]	33		89		31		
emi-MI mez	ans that visible	energy c	ut is perfo	rmed	Shun V	Vatanuki @Toł	noku University	

Mass Template Method

- To avoid systematic bias of mass parameter, mass template method was tried.
- Fit dataset by PDFs from template samples with different Higgs mass.
- Template samples with M_{Higgs} = 124.85, 124.90, 124.95, 125.00, 125.05, 125.10, 125.15, and 125.20 are used (8points).
- Signal PDF is used as histograms reconstructed from template samples.
- BG PDF is used as 3rd order polynomial from DBD sample fitting.
- Toy-MC is made for data points, and mean of χ^2 values is plotted and fitted by parabola.
- Mass value at minimum χ^2 point is estimated Higgs mass so that we can evaluate mass error from that.

Result

Next plan for

CP MIXTURE STUDY

Introduction

- In SM CP property of Higgs(h) is purely even.
- In 2HDM, there can be CP purely odd Higgs(A), and it is possible that h and A are mixed.
 - One of the parameters of this mixture is η, which is coefficient of CP odd Higgs amplitude.

$$M_{\phi Z} = M_{hZ} + \eta \cdot M_{AZ}$$

 When η has non-zero value, it affects Z production angle in ee->Zh event.

= We can observe asymmetry

 $\frac{d\sigma}{d\cos\theta} = \frac{G_F^2 M_Z^6 \beta}{16\pi} \frac{1}{D_Z(s)} (v_e^2 + a_e^2) \left[1 + \frac{s\beta^2}{8M_Z^2} (1 - \cos^2\theta) + \eta \frac{v_e a_e}{v_e^2 + a_e^2} \frac{2s\beta}{M_Z^2} \cos\theta + \eta^2 \frac{s^2\beta^2}{4M_Z^4} \left(1 - \sin^2\frac{\theta}{2} \right) \right]$

Procedure of CP-mixture Study

-0.95

Extrapolation

0.95

- Look Z production angle of μμh.
- Estimate N_{sig} by recoil mass fitting for each region of cosθ_{z boson}.
- Fit the obtained distribution by parabola, and check asymmetry.

Re-calculation η

$$\frac{d\sigma}{d\cos\theta} = \frac{G_F^2 M_Z^6 \beta}{16\pi} \frac{1}{D_Z(s)} (v_e^2 + a_e^2) \left[1 + \frac{s\beta^2}{8M_Z^2} (1 - \cos^2\theta) + \eta \frac{v_e a_e}{v_e^2 + a_e^2} \frac{2s\beta}{M_Z^2} \cos\theta + \eta^2 \frac{s^2\beta^2}{4M_Z^4} \left(1 - \sin^2\frac{\theta}{2} \right) \right]$$

$$\bigotimes \begin{cases} v_e - a_e = \frac{e}{\cos\theta_w \sin\theta_w} \left(-\frac{1}{2} + \sin^2\theta_w \right) \\ v_e + a_e = \frac{e}{\cos\theta_w \sin\theta_w} (-\sin^2\theta_w) \end{cases}$$

When define coefficients of pol2 of $\cos\theta$ distribution as p_1 and p_2 , η can be expressed by looking ratio p1/p2.

$$\eta = \frac{M_Z^2}{2s} \left[-\frac{16}{\beta} \frac{v_e a_e}{v_e^2 + a_e^2} \pm \sqrt{\frac{16^2}{\beta^2} \left(\frac{v_e a_e}{v_e^2 + a_e^2}\right)^2 - \frac{4s}{M_Z^2} \frac{p_1}{p_2}} \right] = 0.06654 \times \left[-2.411 \pm \sqrt{5.811 - 30.06 \times \frac{p_1}{p_2}} \right]$$

→ η=-0.044+-0.105 (SM sample)

or, if O(η^2) is ignored...

 $\eta = -\frac{\beta}{16} \frac{v_e^2 + a_e^2}{v_e a_e} \frac{p_1}{p_2} = -0.4148 \dots \times \frac{p_1}{p_2}$ $\implies \eta = -0.075 + -0.157 \text{ (SM sample)}$

Next Plan

- We have a generator with anomalous ZZH coupling, which is expressed by a, b, b[~] parameters.
 - parameter of a will change only total cross section.
 - b and b[~] change cosθ distribution but it is complicated (right figure)
 - I should check the relation between
 "η" and "a, b, b[~]".
- I will try to estimate η value in other calculation.

