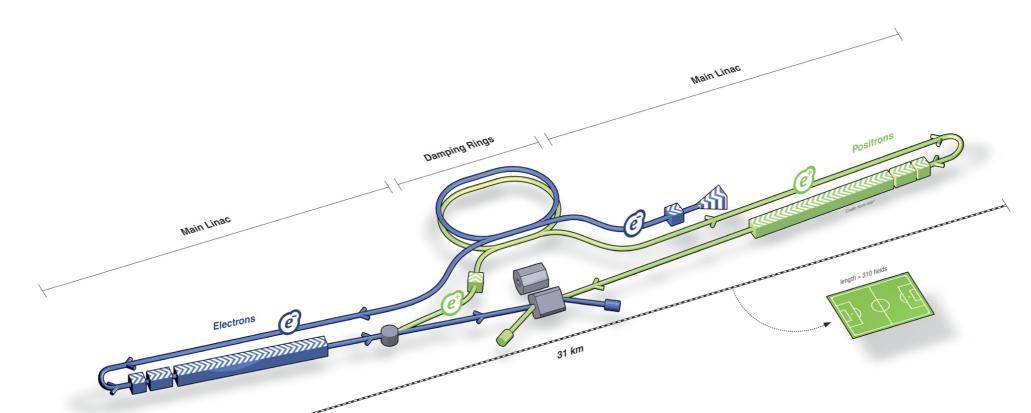
LCUK SILICON KICKOFF MEETING BRISTOL

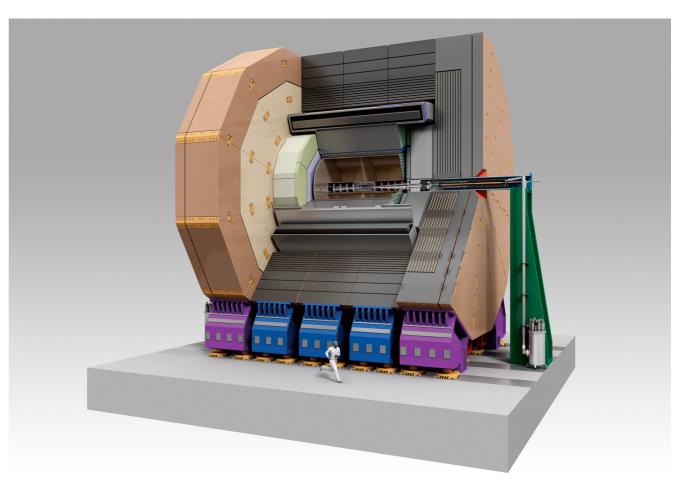
Joel Goldstein 20/11/14



- * Today's Purpose:
 - * Introduction to ILC & tracking for newcomers
 - * Kick-start thinking about ILC pixel tracking
 - * Discuss plans for next two years in likely funding scenarios
 - * Go away and start working
- * Two proper talks:
 - * Introduction
 - * 2011 SPT proposal
- * Round-table and discussions flexible timing
- Extra discussion on AIDA2020 for those involved
 Joel Goldstein Bristol 2014

The ILC




- * 500 GeV with low energy running
 - * Upgrade to 1 TeV
- * Two detectors in push-pull configuration
- * Beam structure:
 - * 1312 bunches with 554 ns spacing
 - * 5 Hz repetition

ILC Scheme | © www.form-one.de

Bristol 2014

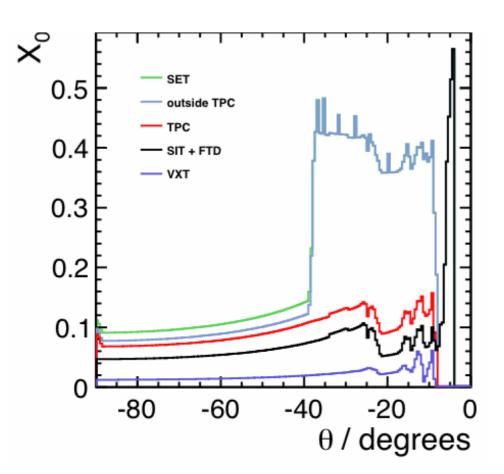
BRISTOL Detector Concepts

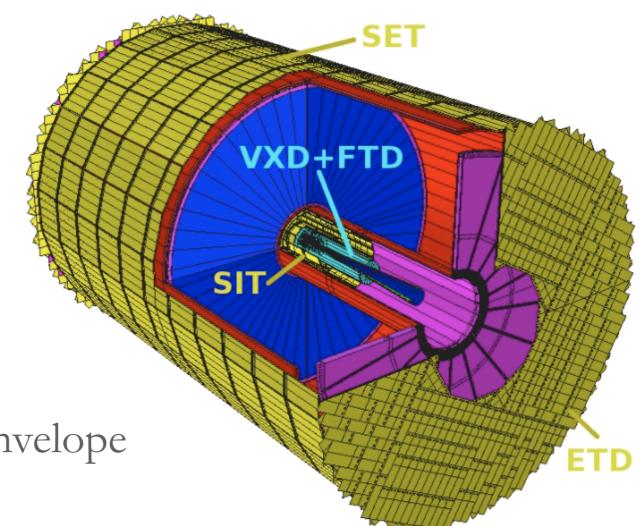
- * SiD
 - * Compact, 5T
 - * All silicon tracking

- * ILD
 - * 3.5T Field
 - * TPC + silicon

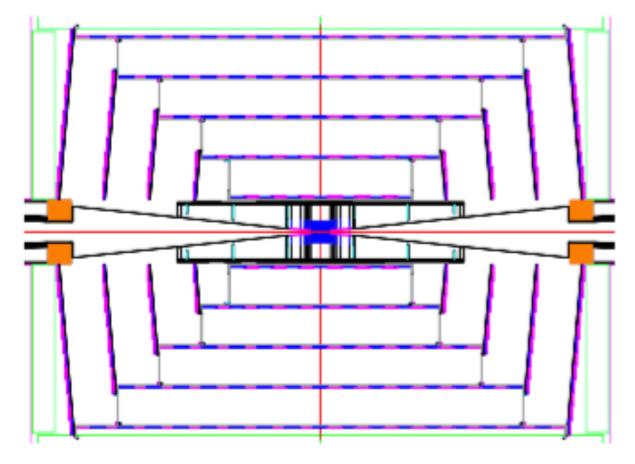
Joel Goldstein

Bristol 2014





- * Key measurements in Higgs sector
 - * Higgs hadronic WW/ZZ separation
 - * Particle flow calorimetry
 - * Tracks in jets must be matched to calorimeter deposits
 - Higgs recoil from Z->μμ
 - * $\Delta p/p^2 \le 5 \times 10^{-5}/\text{GeV}$
 - * $\gamma\gamma$ collisions produce ~1 hadronic event per bunch



- * TPC with silicon strip envelope
- * Outer radius 1.8 m
- * Length +/- 2.4 m

Joel Goldstein

SiD Tracking

Barrel Region	R (cm)	Length of sensor coverage (cm)	Number of modules in ϕ	Number of modules in z
Barrel 1	21.95	111.6	20	13
Barrel 2	46.95	147.3	38	17
Barrel 3	71.95	200.1	58	23
Barrel 4	96.95	251.8	80	29
Barrel 5	121.95	304.5	102	35
Disk Region	Zinner (cm)	R _{inner} (cm)	R _{outer} (cm)	Number of modules per end
Disk 1	78.89	20.89	49.80	96
Disk 2	107.50	20.89	75.14	238
Disk 3	135.55	20.89	100.31	438
Disk 4	164.09	20.89	125.36	662

- * Silicon strip tracker
 - * Coverage to $\sim 10^{\circ}$
 - * ~1% X_0 per layer
 - * Total < 0.15% in barrel < 0.25% in endcap
- * 50µm readout pitch with intermediate strips Joel Goldstein Bristol 2014

- * Japanese expected to make decision in 2016
- * We asked STFC for $\pounds74k-\pounds198k$ pa
 - * $\pounds 49k pa + CG$ effort for silicon
- * PPRP went OK, outcome not known until next SB
- 1.Determine tracker performance requirements in central and forward regions as a function of radius and azimuthal angle
- 2. Evaluate performance (resolution, two-hit resolution, timing, power consumption etc.) of potential sensor technologies
- 3. Initial simulations of potential dedicated pixel architectures
- 4. Develop conceptual designs including realistic material budgets including support and services
- 5. Evaluate tracking performance of designs through physics simulation

Joel Goldstein

Bristol 2014