IP BPM resolution study results

N. Blaskovic

Contents (1)

- Comparison of Σ_{I} , reference diode & ICT
- Calibration waveforms
- Mean-subtracted calibration waveforms
- Calibration vs. attenuation
- Calibration vs. charge
- θ_{IQ} vs. sample number

Contents (2)

- 2-on-1 resolution: direct and fitting
- 2-on-1 resolution & jitter vs. charge
- 2-on-1 resolution & jitter vs. attenuation
- Saturation cut for IPB to IPC interpolation
- Jitter and resolution over mover scan
- Interpolated x-to-y position correlation
- On-waist BPM correlation with y', x

Charge information

- Correlation between:
 - $-P2 \Sigma_{I}$ (with no stripline attenuation)
 - $-MFB1FF \Sigma_{I}$ (with 6 dB stripline attenuation)
- Correlation between:
 - $-MFB1FF \Sigma_{I}$ (with 6 dB stripline attenuation)
 - IP reference diode
 - EXT ICT (0.047 x 10¹⁰ pedestal removed)

Waveforms over calibrations

- Data presented from 31st October, for each attenuation from of 0 to 50 dB
- Conditions:
 - Charge of ~ 0.5×10^{10}
 - No splitters
- Waveforms at centre & extreme positions of IPB(Y) calibration with waist at IPB:
 - -1&Q
 - Ref (X) diode

Positions plotted: 0, ±1.8 um

N. Blaskovic

Positions plotted: 0, ±6 um

N. Blaskovic

Positions plotted: 0, ±18 um

N. Blaskovic

Positions plotted: 0, ±60 um

N. Blaskovic

Positions plotted: 0, ±90 um

N. Blaskovic

Positions plotted: 0, ±90 um

N. Blaskovic

Mean-subtracted waveforms

- For the same IPB(Y) calibrations, waveforms at centre & extreme positions:
 - Mean-subtracted I & Q
 - Sum in quadrature of mean-subtracted I & Q

Vertical scale of plots

- The vertical scale of all waveforms is set equal for attenuations 0 to 30 dB as calibration range scales with attenuation
- For 40 and 50 dB, the calibration range was limited by the mover range; hence, the vertical scale of the waveforms is scaled accordingly

Positions plotted: 0, ±1.8 um

N. Blaskovic

Positions plotted: 0, ±6 um

N. Blaskovic

Positions plotted: 0, ±18 um

N. Blaskovic

Positions plotted: 0, ±60 um

N. Blaskovic

Positions plotted: 0, ±90 um

N. Blaskovic

Positions plotted: 0, ±90 um

N. Blaskovic

Calibration vs. attenuation

• For the same IPB(Y) calibrations, calibration plots for each attenuation

Calibration vs. charge

- Calibrations performed at different charges
- Charge-normalised calibration

 $\left(\frac{I\cos\theta_{IQ} + Q\sin\theta_{IQ}}{charge}\right)$

position

should be charge-independent

 However, considerable dependence found both when using stripline MFB1FF and reference cavity signal for normalisation

36

N. Blaskovic

FONT Meeting

θ_{IQ} vs. sample number

- The frequency with which θ_{IQ} goes through 2π is both:
 - The frequency of the 'baseband' I & Q signals
 - The dipole-to-reference cavity frequency mismatch
- θ_{IQ} presented here obtained for IPB(Y) for a calibration in the 2-on-1 resolution study

θ_{IQ} vs. sample number

- θ_{IQ} changes by 1 radian over 10 samples
 (28 ns) or 2π over 180 ns
- The I and Q frequency is: frequency = $\frac{1}{180 \text{ ns}} = 6 \text{ MHz}$
- This matches the dipole-to-reference cavity frequency mismatch reported at the ATF IP BPM meeting

2-on-1 resolution study

 2 processors on one BPM to estimate resolution limit due to electronics noise (Inoue et al., 2008):

N. Blaskovic

Waveforms

• Outputs from the two sets of electronics digitised by the FONT5 board at 357 MHz:

- Electronics Y1 & 07-2: I on ADC1, Q on ADC2

- Electronics Y2 & 07-3: I on ADC4, Q on ADC5
- Ref(X) diode output on ADC9
- Data not charge normalised given charge stability (standard deviation of 0.01 x 10^{10}), i.e. position = $I\cos\theta_{IQ} + Q\sin\theta_{IQ}$

ADC waveforms for ICTscan2_0.84_Board1_311014 on 311014

N. Blaskovic

- One method to calculate the resolution is to obtain a set of position measurements from each set of electronics
- The resolution then is Resolution = $\frac{\text{std}(\text{Residual})}{\sqrt{2}}$ where the residual is the set of differences between the two sets of measurements

Averaging

- When averaging, a position is obtained for each sample number; then, the position measurements from each sample are averaged with equal weighting
- The alternative (not done here) is to integrate the data across a window first and then obtain a position measurement

 Another method to calculate the resolution is to fit:

$$y_1 = \alpha y_2 + \beta q + \gamma$$

where y_1, y_2 are positions from the two sets of electronics, q is the charge (from MFB1FF) and α, β, γ are fit constants

• For ICTscan_0.84 using samples 38 to 44, $\alpha = 0.98, \beta = 0.00042, \gamma = -0.44$

The resolution is

Resolution = $\frac{\text{std}(y_1 - y_1^{\text{pred}})}{\sqrt{2}} = 23 \text{ nm}$

for charge of 0.81 x 10¹⁰ with 6 dB splitter

 Equivalent to 19 nm resolution at 0.5 x 10¹⁰ with no splitter

• Including Q' to fit:

Method	Resolution (nm)
std(y ₁ - y ₂)/ $\sqrt{2}$	22.9
Fitting charge, constant	22.6
Fitting charge, Q' of 2 nd set, constant	22.3
Fitting charge, Q' of both sets, constant	22.2

Resolution vs. charge

- Calibrating at each charge using MFB1FF for charge normalisation produces plot of 2-on-1 resolution vs. charge
- 0.047 x 10¹⁰ EXT ICT pedestal removed
- Curve shown takes resolution = 1/charge dependence taking lowest-charge point as starting point

Jitter vs. charge

- Jitter measured at each charge over the same charge scan
- Calibrated at each charge, using MFB1FF for charge normalisation
- 0.047 x 10¹⁰ EXT ICT pedestal removed
- Curve shown takes jitter = 1/charge dependence taking lowest-charge point as starting point

Resolution vs. attenuation

- 2-on-1 resolution vs. attenuation
- Data taken on 241014
- Operated at a charge of 0.84 x 10^{10}
- Calibrated at each attenuation, using reference diode for charge normalisation
- Straight line shows expected scaling with attenuation taking highest-attenuation point as starting point

Jitter vs. attenuation

 Jitter vs. attenuation for same data set as for resolution vs. attenuation

Saturation cut

- Place cuts on $\sqrt{I^2 + Q^2}$ of:
 - 6000 ADC counts (6 triggers cut from 1000)
 - 3000 ADC counts (260 triggers cut from 1000)- 2500 ADC counts (604 triggers cut from 1000)
- For each:
 - Interpolate y trajectory from IPB to IPC
 - Measure interpolated jitter from IPB to IPC
- Waist at nominal IP, 0.48 x 10¹⁰ charge

Saturation cut

- Saturation cut leaves interpolated jitter unchanged (82 nm)
- As expected* if the BPM is not resolution limited with jitters of ~3 um at the BPMs

* Model says that there will be no y position correlation between locations on-waist and off-waist, so cutting on positions off-waist will not reduce jitter on-waist

x-to-y position correlation

- x-to-y position correlation is:
 - -< 5 % at IPB or IPC</p>
 - < 35 % interpolated at y waist using IPB & IPC</p>
- Removing correlation with x reduces interpolated y jitter on y waist from 82 to 77 nm

Dynamic range

- Wide mover scan of 48 um performed
- 0 dB but with 6 dB splitter (2-on-1 study)
- Data from 311014 at 0.5 x 10¹⁰ charge
- Constant jitter of ~120 nm measured across >30 um dynamic range suggests:
 - Wide dynamic range (cf. Honda: 5 um)
 - System is not resolution limited
- Non-linear position output at edge of scan

N. Blaskovic

FONT Meeting

Dynamic range

 2-on-1 noise limit to resolution calculated at each mover setting: appears constant over mover scan

76

N. Blaskovic

FONT Meeting

Jitter on waist

- jitRun16_0dB taken on 301014 after:
 QF1FF & QD0FF current scans
 EY, AY, Coup2 linear knobs scans
- 0.48 x 10¹⁰ charge with no splitter
- Waist at IPB
- See 'Jitter minimisation at BPM on waist' presentation for plots from current & linear knob scans, and jitter & correlation (with phase, charge, y', x) vs. sample

Jitter on waist

Remove correlation with	Jitter at IPB (Y) (nm)	
	Single-sample	Multi-sample
Nothing	100	86
P2 charge	96	86
P2 phase	100	85
PIP (Y) position	100	86
IPB (X) position	100	85
All of the above	95	84

Jitter on waist

Negligible correlation with

– PIP (Y) position, i.e. angle in IP area
– IPB (X) position, i.e. x, y coupling