L* Status

Karsten Buesser 28.11.2014

ILD Dimensions

ILD Dimensions

Change Management Board

- Members:
 - M. Harrsion (BNL, chair)
 - H. Hayano (KEK)
 - V. Kuchler (FNAL)
 - B. List (DESY, change manager)
 - J. List (DESY, PD-Physics, ILD)
 - T. Markiewicz (SLAC, PD-MDI, SiD)
 - M. Ross (SLAC)
 - N. Solyak (FNAL)
 - N. Terunuma (KEK)
 - N. Walker (DESY)
 - A. Yamamoto (KEK)
 - K. Yamamoto (KEK)
- Final decision is made by CMB chair
- Can be escalated to LCC directorate, e.g. by PD director

CHANGE	EDMS No:	Created: 02-09-2014
REQUEST	D*01082495	Last modified: 09-09-2014
NO. ILC-CR-0002		

BASELINE OPTICS TO PROVIDE FOR A SINGLE FFS L* (QD0 EXIT – IP DISTANCE) OPTICS CONFIGURATION

The final focus system (FFS) and beam dump extraction system (EXT) baseline design is to provide a standard optics with fixed L* (yet to be determined, but provisionally assumed to be $\leq 4m$). This optics solution is to be common to both detectors.

- Submitted by Glen White (BDS WG leader) in September 2014
- Change Management Board has formed a Change Review Panel for this request:
 - T. Markiewicz (SiD), N. Terunuma, N. Walker, G. White, KB (MDI, ILD)
 - CRP has agreed to come to a suggestion at the time scale of the next ILC workshop (April 2015, Tokyo)
 - CMB will decide eventually

ILD: Current Lower Constraints on L*

- Detailed design of forward region:
 - LumiCal, LHCAL, BeamCal
 - Beam Pipe, Bellows, Flanges, Vacuum Pumps
 - Optimised (many FTEs in the last ~10y) for
 - operations: no FCAL or masks inside the tracking volume
 - assembly and maintenance
 - physics: VTX (occupancies and layer radii), FCAL performance, hermeticity

Forward Region - possible changes towards L*=4m

- Need to find ~40cm in current design
- Look into design optimisations of all structures
 - maybe find some 10cm there, but more?
- Biggest devices:
 - Pump in front of BeamCal (30cm)
 - LHCAL (~50cm)

FCAL

- Had discussion with FCAL collaboration on Monday
- They will look into optimisation of existing BeamCal and LumiCal design
 - not sooo eager to start activities on LHCAL
- Lucia Bortko (Zeuthen) will start background simulation on pair background with new BeamCal location

• 1E-6 Pa (1E-8 mbar, ~7.5 nTorr) for H₂

Vacuum Requirements

• L. Keller, T. Maruyama, T. Markiewicz - ILC-Note-2007-016

Loss pts. of 150 random beam-gas brem. trajectories in the BDS using LP TURTLE

Vacuum Requirements

• L. Keller, T. Maruyama, T. Markiewicz - ILC-Note-2007-016

Summary of Hits/bunch and Hits/160 bunches (TPC) – both beams, 10 nTorr

Hits/bunch

Hits/160 bunches (TPC)

Hit	GEANT3 Beam-gas brem (charged)	TURTLE Beam-gas brem (charged)		TURTLE Beam-gas brem (photons)		TURTLE Coulomb (charged)	
Location	Hits	Hits	<e></e>	Hits	<e></e>	Hits	<e></e>
FD Prot. Coll. (13 m) x > 0.74 cm y > 0.45 cm Origin 0-800m from IP	0.22 35	0.17 27	235 GeV	0.056 9.0	~50 GeV	0.009 1.4	250 GeV
Inside F.D. (10 – 3.5 m) (QF1 to QD0) Origin 0-100m from IP	0.014 2.2	0.006 1.0	~100 GeV	0	-	0	-
IP region (± 3.5 m) (R > 1 cm at Z = 6.0 m) Origin 0-200m from IP	0.04 6.4	0.02 3.2	~100 GeV	0	-	0	-

GEANT3 simulations show that only hits in the IP region (± 3.5 m) cause problems for the vertex detector

How relevant is the Vacuum inside the detector?

(EE)X

- O(10 nTorr) is the required vacuum level up to +- 200m
- Beam-Gas background produced inside the detector is mostly forward peaked - leaves the detector through the beam pipe
- So in theory, vacuum level inside the detector could be much higher
- To be checked with full detector simulations!

Origin is inside 200 m from the IP

Beam-Gas Bremsstrahlung Electrons Hitting Beyond the Final Doublet

Check Vacuum Conditions

- MolFlow+ (CERN)
- Molecule tracker for given gases, materials and geometries
- For CO: 4.5E-9 mbar
 - Suetsugu: 6E-9 mbar

New Vacuum Geometry

- Moved the pumps to the upstream sides of both QD0s
 - increases pumping lever arm by ~5m on both sides...

- Increases level to 2.5E-7 mbar
 - for CO
- ~200 nTorr
- ~50 times higher than with old pump location

- Simulate vacuum conditions for relocated pump geometries
 - all relevant gases (H₂, CO, CO₂)
 - check influence of cold QD0 magnet acts like a cryo pump...
 - work in progress (DESY, LAL)
- Do a full detector simulation study with different levels of rest gas in the beam pipe
 - try to find someone at DESY
- Agree on tolerable level for residual gas pressures