Slepton mass measurement in a $\tilde{\tau}$ co-annihilation scenario

Mikael Berggren ${ }^{1}$

${ }^{1}$ DESY, Hamburg
ILD optimsation and analysis phone meeting, Dec 2014

Outline

This is a status report !!!
(9) Outline
(2) Studying SUSY in rich models
(3) A bench-mark point: STC4

- STC4 @ 500 GeV
- STC4 @ 500 GeV: Globaly
- STC4 @ $500 \mathrm{GeV}: ~ \tilde{e}, \tilde{\mu}$
- STC4 @ $500 \mathrm{GeV}: \tilde{\tau}_{1}$
- Massive SGV $\gamma \gamma$ production
- Fitting the $\tilde{\tau}_{1}$ end-point

4) Outlook \& Conclusions

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see. - Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle.

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle.

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle.

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:
- When data starts coming in, what is is first light?
- How do we quickly determine a set of model parameters?
- What is then the optimal use of beam-time in such a scenario?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_{1} \tilde{\tau}_{2}$ and $\tilde{\tau}_{2} \tilde{\tau}_{2}$ thresholds.
- Clean vs. high cross-section
- And so on

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:
- When data starts coming in, what is is first light?
- How do we quickly determine a set of model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_{1} \tilde{\tau}_{2}$ and $\tilde{\tau}_{2} \tilde{\tau}_{2}$ thresholds.
- Clean vs. high cross-section
- And so on

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:
- When data starts coming in, what is is first light?
- How do we quickly determine a set of model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_{1} \tilde{\tau}_{2}$ and $\tilde{\tau}_{2} \tilde{\tau}_{2}$ thresholds.
- Clean vs. high cross-section
- And so on

Aim of the study

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

- Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.
- Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:
- When data starts coming in, what is is first light?
- How do we quickly determine a set of model parameters?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_{1} \tilde{\tau}_{2}$ and $\tilde{\tau}_{2} \tilde{\tau}_{2}$ thresholds.
- Clean vs. high cross-section.
- And so on ...

SUSY signatures and backgrounds

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
- $Z Z \rightarrow f \bar{f} \nu \nu$
- Fake missing energy + pair of SM-particles $=\gamma \gamma$ processes, ISR, single IVB.

SUSY signatures and backgrounds

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
- WW $\rightarrow \ell \nu \ell \nu$
- $Z Z \rightarrow f \bar{f}_{\nu \nu}$
- Fake missing energy + pair of SM-particles $=\gamma \gamma$ processes, ISR, single IVB.

SUSY signatures and backgrounds

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
- WW $\rightarrow \ell \nu \ell \nu$
- $Z Z \rightarrow f \bar{f}_{\nu \nu}$
- Fake missing energy + pair of SM-particles $=\gamma \gamma$ processes, ISR, single IVB.
with γ un-detected.

SUSY signatures and backgrounds

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
- WW $\rightarrow \ell \nu \ell \nu$
- $Z Z \rightarrow f \bar{f}_{\nu \nu}$
- Fake missing energy + pair of SM-particles $=\gamma \gamma$ processes, ISR, single IVB.
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow e^{+} e^{-} \gamma \gamma \rightarrow e^{+} e^{-} f \bar{f}$, with both $e^{+} e^{-}$un-detected.
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f} \gamma$, with γ un-detected.

Observables:

Observable	Gives	If
Edges (or average and width)	Masses	\ldots not too far from threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions from full reconstruction	Mass	... cascade decays
Angular distributions from full reconstruction	Spin, CP,	\ldots masses known
Un-polarised Cross-section in continuum	Mass, coupling	

Observables: Pair-production, two-body decay

Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$, followed by $X \rightarrow U Y$, where Y is a detectable (SM) particle. Then

- $E_{Y \max (\min)}=\frac{E_{\text {Beam }}}{2}\left(1-\left(\frac{M_{u}}{M_{X}}\right)^{2}\right)\left(1_{(-)}^{+} \sqrt{1-\left(\frac{M_{X}}{E_{\text {Beam }}}\right)^{2}}\right)$,
- $M_{X}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}}$

the spectrum is flat (eg if X is a sfermion) between the end-points:

Observables: Pair-production, two-body decay

Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$, followed by $X \rightarrow U Y$, where Y is a detectable (SM) particle. Then

- $E_{Y \max (\min)}=\frac{E_{\text {Beam }}}{2}\left(1-\left(\frac{M_{U}}{M_{X}}\right)^{2}\right)\left(1_{(-)}^{+} \sqrt{1-\left(\frac{M_{X}}{E_{\text {Beam }}}\right)^{2}}\right)$, so that
- $M_{X}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}}$
- $M_{U}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}} \sqrt{1-\Sigma / E_{\text {Beam }}}$
$\left(\Delta=E_{Y \text { max }}-E_{Y \text { min }} ; \Sigma=E_{Y \text { max }}+E_{Y \text { min }}\right)$

Observables: Pair-production, two-body decay

Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$, followed by $X \rightarrow U Y$, where Y is a detectable (SM) particle. Then

- $E_{Y \max (\text { min })}=\frac{E_{\text {Beam }}}{2}\left(1-\left(\frac{M_{u}}{M_{X}}\right)^{2}\right)\left(1_{(-)}^{+} \sqrt{1-\left(\frac{M_{X}}{E_{\text {Beam }}}\right)^{2}}\right)$, so that
- $M_{X}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}}$
- $M_{U}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}} \sqrt{1-\Sigma / E_{\text {Beam }}}$
$\left(\Delta=E_{Y \text { max }}-E_{Y \text { min }} ; \Sigma=E_{Y \text { max }}+E_{Y \text { min }}\right)$
If the spectrum is flat (eg if X is a sfermion) between the end-points:
$\left.0<E_{Y}\right\rangle=\left(E_{Y \text { max }}+E_{Y \min }\right) / 2$ and $\sigma_{E_{Y}}=\sqrt{\left(E_{Y \text { max }}-E_{Y \text { min }}\right) / 12}$,
gives

Observables: Pair-production, two-body decay

Consider $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$, followed by $X \rightarrow U Y$, where Y is a detectable (SM) particle. Then

- $E_{Y \max (\text { min })}=\frac{E_{\text {Beam }}}{2}\left(1-\left(\frac{M_{u}}{M_{X}}\right)^{2}\right)\left(1_{(-)}^{+} \sqrt{1-\left(\frac{M_{X}}{E_{\text {Beam }}}\right)^{2}}\right)$, so that
- $M_{X}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}}$
- $M_{U}=E_{\text {Beam }} \sqrt{1-(\Delta / \Sigma)^{2}} \sqrt{1-\Sigma / E_{\text {Beam }}}$
$\left(\Delta=E_{Y \text { max }}-E_{Y \text { min }} ; \Sigma=E_{Y \text { max }}+E_{Y \text { min }}\right)$
If the spectrum is flat (eg if X is a sfermion) between the end-points:
- $\left\langle E_{Y}\right\rangle=\left(E_{Y \text { max }}+E_{Y \text { min }}\right) / 2$ and $\sigma_{E_{Y}}=\sqrt{\left(E_{Y \text { max }}-E_{Y \text { min }}\right) / 12}$, which gives
- $M_{U}=E_{\text {Beam }} \sqrt{1-\frac{2\left\langle E_{Y}\right\rangle}{E_{\text {Beam }}}} \sqrt{1-\left(\frac{6 \sigma_{E_{Y}}^{2}}{\left\langle E_{Y}\right\rangle}\right)^{2}}$
- $M_{X}=E_{B e a m} \sqrt{1-\left(\frac{12 \sigma_{E_{Y}}^{2}}{\left.<E_{Y}\right\rangle}\right)^{2}}$

Example: STC4

STC4-8

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology, low energy).
At $E_{C M S}=500 \mathrm{GeV}$:

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}_{3}^{0}$ (in $\left.\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0}\right)$
(See H. Baer, J. List, arXiv:1307:0782.)

Full STC4 mass-spectrum

Zoomed STC4 mass-spectrum

Channels and observables at 250, 350 and 500 GeV

Channel	Threshold	Available at	Can give
$\tilde{\tau}_{1} \tilde{\tau}_{1}$	212	250	$M_{\tilde{\tau}_{1}}, \tilde{\tau}_{1}$ nature, τ polarisation
$\tilde{\mu}_{\mathrm{R}} \tilde{\mu}_{\mathrm{R}}$	252	250+	$+M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{\mathrm{e}}_{\mathrm{R}} \tilde{\mathrm{e}}_{\mathrm{R}}$	252	250+	$+M_{\tilde{\mathrm{e}}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mathrm{e}}_{\mathrm{R}}$ nature
$\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0 *)}$	302	350	$+M_{\tilde{\chi}_{2}^{0}}, M_{\tilde{\chi}_{1}^{0}}$, nature of $\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}$
$\tilde{\tau}_{1} \tilde{\tau}_{2}{ }^{*}$	325	350	$+M_{\tilde{\tau}_{2}} \theta_{\text {mix }} \tilde{\tau}$
$\tilde{\mathrm{e}}_{\mathrm{R}} \tilde{\mathrm{e}}_{\mathrm{L}}{ }^{*)}$	339	350	$+M_{\tilde{e}_{L}}, \tilde{\chi}_{1}^{0}$ mixing, $\tilde{e}_{\text {L }}$ nature
$\tilde{\nu}_{\sim}^{\sim} \tilde{\nu}_{\tilde{\tau}}$	392	500	7% visible BR $\left(\rightarrow \tilde{\tau}_{1} W\right)$
$\tilde{\chi}_{1}^{ \pm} \tilde{\chi}_{1}^{ \pm *)}$	412	500	$+M_{\tilde{\chi}_{1}^{ \pm}}$, nature of $\tilde{\chi}_{1}^{ \pm}$
$\tilde{\mathrm{e}}_{\mathrm{L}} \tilde{\mathrm{e}}_{\mathrm{L}}{ }^{*)}$	416	500	$+M_{\tilde{\chi}_{\mathrm{L}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{e}_{\mathrm{L}}$ nature
$\tilde{\mu}_{\mathrm{L}} \tilde{\mu}_{\text {L }}{ }^{*)}$	416	500	$+M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{\tau}_{2} \tilde{\tau}_{2}{ }^{*)}$	438	500	$+M_{\tilde{\tau}_{2}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\tau}_{2}$ nature, $\theta_{\text {mix }} \tilde{\tau}$
$\tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0 *)}$	503	500+	$+M_{\tilde{\chi}_{3}^{0}}, M_{\tilde{\chi}_{1}^{0}}$, nature of $\tilde{\chi}_{1}^{0}, \tilde{\chi}_{3}^{0}$

*): Cascade decays.

+ invisible $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}, \tilde{\nu}_{\tilde{\mathrm{e}}} \tilde{\nu}^{\tilde{\nu}_{\mathrm{e}}^{2}} . \tilde{u}$.

Features of STC4 @ 500 GeV

- The $\tilde{\tau}_{1}$ is the NLSP.
- For $\tilde{\tau}_{1}: E_{\tau, \text { min }}=2.3 \mathrm{GeV}, E_{\tau, \max }=45.5 \mathrm{GeV}$:
$\gamma \gamma-$ background \Leftrightarrow pairs - background.
- For $\tilde{\tau}_{2}:: E_{\tau, \min }=52.4 \mathrm{GeV}, E_{\tau, \max }=150.0 \mathrm{GeV}$:
$W W \rightarrow I \nu I \nu-$ background \Leftrightarrow Polarisation.
- For \tilde{e}_{R} or $\tilde{\mu}_{\mathrm{R}}:: E_{I, \min }=7.3 \mathrm{GeV}, E_{I, \max }=99.2 \mathrm{GeV}$: Neither $\gamma \gamma$ nor $W W \rightarrow \mid \nu I_{\nu}$ background severe.
- For pol=(1,-1): $\sigma\left(\tilde{e}_{R} \tilde{e}_{R}\right)=1.3 \mathrm{pb}$!
- $\tilde{\tau}$ NLSP $\rightarrow \tau:$ in most SUSY decays \rightarrow SUSY is background to
- For pol=(-1,1): $\sigma\left(\tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}\right)$ and $\sigma\left(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\right)=$several hundred fb and

Features of STC4 @ 500 GeV

- The $\tilde{\tau}_{1}$ is the NLSP.
- For $\tilde{\tau}_{1}: E_{\tau, \text { min }}=2.3 \mathrm{GeV}, E_{\tau, \max }=45.5 \mathrm{GeV}$:
$\gamma \gamma-$ background \Leftrightarrow pairs - background.
- For $\tilde{\tau}_{2}:: E_{\tau, \text { min }}=52.4 \mathrm{GeV}, E_{\tau, \text { max }}=150.0 \mathrm{GeV}$:

WW $\rightarrow I \nu I \nu-$ background \Leftrightarrow Polarisation.

- For $\tilde{\mathrm{e}}_{\mathrm{R}}$ or $\tilde{\mu}_{\mathrm{R}}: ~: E_{l, \min }=7.3 \mathrm{GeV}, E_{l, \max }=99.2 \mathrm{GeV}$: Neither $\gamma \gamma$ nor $W W \rightarrow I \nu I_{\nu}$ background severe.
- $\tilde{\tau}$ NLSP $\rightarrow \tau:$: in most SUSY decays \rightarrow SUSY is background to

Features of STC4 @ 500 GeV

- The $\tilde{\tau}_{1}$ is the NLSP.
- For $\tilde{\tau}_{1}: E_{\tau, \text { min }}=2.3 \mathrm{GeV}, E_{\tau, \max }=45.5 \mathrm{GeV}$:
$\gamma \gamma-$ background \Leftrightarrow pairs - background.
- For $\tilde{\tau}_{2}:: E_{\tau, \min }=52.4 \mathrm{GeV}, E_{\tau, \max }=150.0 \mathrm{GeV}$:

WW $\rightarrow I \nu I \nu-$ background \Leftrightarrow Polarisation.

- For $\tilde{\mathrm{e}}_{\mathrm{R}}$ or $\tilde{\mu}_{\mathrm{R}}: ~: E_{l, \min }=7.3 \mathrm{GeV}, E_{l, \max }=99.2 \mathrm{GeV}$: Neither $\gamma \gamma$ nor $W W \rightarrow I \nu I_{\nu}$ background severe.
- For pol=(1,-1): $\sigma\left(\tilde{\mathrm{e}}_{\mathrm{R}} \tilde{\mathrm{e}}_{\mathrm{R}}\right)=1.3 \mathrm{pb}$!

Features of STC4 @ 500 GeV

- The $\tilde{\tau}_{1}$ is the NLSP.
- For $\tilde{\tau}_{1}: E_{\tau, \text { min }}=2.3 \mathrm{GeV}, E_{\tau, \max }=45.5 \mathrm{GeV}$: $\gamma \gamma-$ background \Leftrightarrow pairs - background.
- For $\tilde{\tau}_{2}:: E_{\tau, \min }=52.4 \mathrm{GeV}, E_{\tau, \max }=150.0 \mathrm{GeV}$: WW $\rightarrow I \nu I \nu-$ background \Leftrightarrow Polarisation.
- For $\tilde{\mathrm{e}}_{\mathrm{R}}$ or $\tilde{\mu}_{\mathrm{R}}: ~: E_{l, \min }=7.3 \mathrm{GeV}, E_{l, \max }=99.2 \mathrm{GeV}$: Neither $\gamma \gamma$ nor $W W \rightarrow I \nu I \nu$ background severe.
- For pol=(1,-1): $\sigma\left(\tilde{\mathrm{e}}_{\mathrm{R}} \tilde{\mathrm{e}}_{\mathrm{R}}\right)=1.3 \mathrm{pb}$!
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma\left(\tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}\right)$ and $\sigma\left(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\right)=$several hundred fb and $\mathrm{BR}(\mathrm{X} \rightarrow \tilde{\tau})>70 \%$. For pol=(1,-1): $\sigma\left(\tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}\right)$ and $\sigma\left(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\right) \approx 0$.

STC4 @ 500 GeV

Strategy:

- Global preselection to reduce SM, while efficiency for all signals stays above ~ 90%.
- The further select for all sleptons ($\tilde{e}_{R}, \tilde{e}_{\mathrm{L}}, \tilde{\mu}_{\mathrm{R}}, \tilde{\mu}_{\mathrm{L}}, \tilde{\tau}_{1}$).
- Next step: specific selections for \tilde{e}_{R} and $\tilde{\mu}_{\mathrm{R}}$, for $\tilde{\mathrm{e}}_{\mathrm{L}}$ and $\tilde{\mu}_{\mathrm{L}}$, and for $\tilde{\tau}_{1}$.
- Last step: add particle id to separate ẽ and $\tilde{\mu}$, special cuts for $\tilde{\tau}_{1}$.
- Check results both for RL and LR beam-polarisation.

STC4 global

After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- | $\cos \theta_{\text {Ptot }} \mid<0.95$
- Exactly two τ-jets
- Visible mass < 300 GeV
- $\theta_{\text {acop }}$ between 0.15 and 3.1

$$
\mathrm{E}_{\mathrm{CMS}}=500 \mathrm{GeV}, \text { Pol }=+0.8,-0.3
$$

Magenta: $\gamma \gamma$, Blue: 3f, Red: Rest of SM, Green: SUSY.

STC4 sleptons @ 500 GeV:ẽ, $\tilde{\mu}$

- Selections for $\tilde{\mu}$ and ẽ:
- Correct charge.
- P_{T} wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
- $\mathrm{E}_{j e t}$, beam-pol 80\%,-30\%...
- Further selections for L (LR):

STC4 sleptons @ $500 \mathrm{GeV}: \tilde{e}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and ẽ:
- Correct charge.
- P_{T} wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
- Cuts on polar angle and angle between leptons.
- $\mathrm{E}_{\text {jet }}$, beam-pol $80 \%,-30 \% \ldots$
- Further selections for L (LR):

STC4 sleptons @ $500 \mathrm{GeV}: \tilde{e}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and ẽ:
- Correct charge.
- P_{T} wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
- Cuts on polar angle and angle between leptons.
- $\mathrm{E}_{j e t}$, beam-pol 80\%,-30\%...

STC4 sleptons @ $500 \mathrm{GeV}: \tilde{e}, \tilde{\mu}$

- Selections for $\tilde{\mu}$ and ẽ:
- Correct charge.
- P_{T} wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
- Cuts on polar angle and angle between leptons.
- $\mathrm{E}_{j e t}$, beam-pol 80\%,-30\%...
- Further selections for L (LR):
- $q_{j e t} \cos \theta_{j e t}$
- $M_{\text {vis }} \neq M_{Z}$

STC4 sleptons @ 500 GeV:ẽ, $\tilde{\mu}$

- Selections for $\tilde{\mu}$ and ẽ:
- Correct charge.
- P_{T} wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
- Cuts on polar angle and angle between leptons.
- $\mathrm{E}_{j e t}$, beam-pol 80\%,-30\%...
- Further selections for L (LR):
- $q_{j e t} \cos \theta_{j e t}$
- $M_{\text {vis }} \neq M_{z}$

Masses from $\tilde{e}, \tilde{\mu}$ in the continuum

- In R[E $\left.E_{\min }, E_{\max }\right]$, the MVB
exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this
won't work.
- Try to mitiaate the effect of extreme cases:
- Also calculate masses using
mean and s.d. of entire
spectrum and compare.
- Make calibration curve with

Masses from $\tilde{e}, \tilde{\mu}$ in the continuum

- In R $\left[E_{\min }, E_{\max }\right]$, the MVB exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
- Also calculate masses using mean and s.d. of entire
 spectrum and compare.
- Make calibration curve with

Masses from $\tilde{\mathrm{e}}, \tilde{\mu}$ in the continuum

- In R $\left[E_{\min }, E_{\max }\right]$, the MVB exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
- Exclude highest/lowest x\%, and/or
- Subdivide in sub-samples and average.
- Also calculate masses using
 spectrum and compare.
- Make calibration curve with

Masses from $\tilde{e}, \tilde{\mu}$ in the continuum

- In R[E $\left.E_{\min }, E_{\max }\right]$, the MVB exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
- Exclude highest/lowest x\%, and/or
- Subdivide in sub-samples and average.
- Also calculate masses using mean and s.d. of entire spectrum and compare.

LSP
 Make calibration curve with

Masses from $\tilde{e}, \tilde{\mu}$ in the continuum

- In R[$\left.E_{\min }, E_{\max }\right]$, the MVB exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
- Exclude highest/lowest x\%, and/or
- Subdivide in sub-samples and average.
- Also calculate masses using mean and s.d. of entire spectrum and compare.

Slepton

- Make calibration curve with ToyMC.

Masses from $\tilde{e}, \tilde{\mu}$ in the continuum

- In R $\left[E_{\min }, E_{\max }\right]$, the MVB exists and is $\min (\max)\left(E_{\ell}\right)(!)$
- In presence of background this \square
$M_{\tilde{\mathrm{e}}_{\mathrm{R}}}=135.01 \pm 0.19 \mathrm{GeV} / c^{2}$
$M_{\tilde{\chi}_{1}^{0}}=101.51 \pm 0.14 \mathrm{GeV} / c^{2}$
-……
0.1 -

Results for full spectrum ($\left.E_{C M S}=500,500 \mathrm{fb}^{-1} @[+0.8,-0.3]\right)$
$M_{\tilde{e}_{R}}=140.90 \pm 0.33 \mathrm{GeV} / c^{2}$
$M_{\tilde{\chi}_{1}^{0}}=107.61 \pm 0.23 \mathrm{GeV} / c^{2}$

- Make calibration curve with ToyMC.

STC4 sleptons @ $500 \mathrm{GeV}: \tilde{\tau}_{1}$

Selections for $\tilde{\tau}_{1}$:

- Correct charge.
- P_{T} wrt. beam and one τ wrt the other.
- $M_{j e t}<M_{\tau}$
- $E_{\text {vis }}<120 \mathrm{GeV}, M_{\text {vis }} \in[20,87]$ GeV .
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in τ-jet.
- At least one τ-jet should be hadronic.

- Anti- $\gamma \gamma$ likelihood.

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Generate on-the-fly inside SGV.
- Callable Whizard is already an option in SGV, but:
- So, I extended the interface, so that
- ... can be set in the SGV steering.

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Callable Whizard is already an option in SGV, but:
- So, I extended the interface, so that
- ... can be set in the SGV steering.

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Generate on-the-fly inside SGV.
- Callable Whizard is already an option in SGV, but:
- So, I extended the interface, so that

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Generate on-the-fly inside SGV.
- Callable Whizard is already an option in SGV, but:
- Most control in Whizard steering-file, not in SGV.
- Can't set unique seed to event-generation per job in SGV.
can be set in the SGV steering

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Generate on-the-fly inside SGV.
- Callable Whizard is already an option in SGV, but:
- Most control in Whizard steering-file, not in SGV.
- Can't set unique seed to event-generation per job in SGV.
- So, I extended the interface, so that
- Generator seed,
- Beam-characteristics (particle, pol
- Beam-spectrum,
- ISR on or off,
- Requested channel,
- and Ecms
can be set in the SGV steering.

Massive SGV $\gamma \gamma$ production

- Note the few $\gamma \gamma$ events just at the end-point!
- Don't want to do "dirty tricks" to fit the end-point \Rightarrow need more stat.
- But l've already used all existing generated events, and that only represents $20 \mathrm{fb}^{-1}$, but is nevertheless 580 GB in 1134 stdheps \Rightarrow
- Generate on-the-fly inside SGV.
- Callable Whizard is already an option in SGV, but:
- Most control in Whizard steering-file, not in SGV.
- Can't set unique seed to event-generation per job in SGV.
- So, I extended the interface, so that
- Generator seed,
- Beam-characteristics (particle, polarisation, type of photon,...),
- Beam-spectrum,
- ISR on or off,
- Requested channel,
- and ECMS
- ... can be set in the SGV steering.

Massive SGV $\gamma \gamma$ production

- Using the existing meta-data files for aa_2f, easy to script a massive production.
- Specify wanted integrated lumi, maximum number of events/job , and the set of meta-data files to parse.
- Some notes:

Massive SGV $\gamma \gamma$ production

- Using the existing meta-data files for aa_2f, easy to script a massive production.
- Specify wanted integrated lumi, maximum number of events/job , and the set of meta-data files to parse.
- On the German NAF:
- 1615 jobs of 0.5 MEvents
- Total generated: 0.8 GEvents.
- Wall-clock time first started to last completed: 3 hours (with typically 200-300 jobs running at the same time).
- Written to analysis ntuple: 83 MEvents, size 330 GB (compare: would have needed TB:s of stdheps!)

Massive SGV $\gamma \gamma$ production

- Using the existing meta-data files for aa_2f, easy to script a massive production.
- Specify wanted integrated lumi, maximum number of events/job , and the set of meta-data files to parse.
- On the German NAF:
- 1615 jobs of 0.5 MEvents
- Total generated: 0.8 GEvents.
- Wall-clock time first started to last completed: 3 hours (with typically 200-300 jobs running at the same time).
- Written to analysis ntuple: 83 MEvents, size 330 GB (compare: would have needed TB:s of stdheps!)
- Some notes:
- The cross-section of the channels was corrected wrt. the DBD numbers (to take care of not only the ratio of number of γ :s to electrons, but also the different beam-profiles.
- In the DBD-production, an artificial p_{T}-kick was applied to the events, which was not done now.

Fitting the $\tilde{\tau}_{1}$ end-point

- Only the upper end-point is relevant.
- Background subtraction:
- $\tilde{\tau}_{1}$: Important SUSY
background,but region
above 45 GeV is signal free.
Fit exponential and
extrapolate.
- Fit line to (data-background fit).

Fitting the $\tilde{\tau}_{1}$ end-point

- Only the upper end-point is relevant.
- Background subtraction:
- $\tilde{\tau}_{1}$: Important SUSY background, but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background

Fitting the $\tilde{\tau}_{1}$ end-point

- Only the upper end-point is relevant.
- Background subtraction:
- $\tilde{\tau}_{1}$: Important SUSY background, but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

Fitting the $\tilde{\tau}_{1}$ end-point

- Only the upper end-point is relevant.
- Background subtraction:
- $\tilde{\tau}_{1}$: Important SUSY

Results for $\tilde{\tau}_{1}$
$E_{\max , \tilde{\tau}_{1}}=44.51_{-0.10}^{+0.12} \mathrm{GeV}$
Translates to an error of $\sim 0.06 \mathrm{GeV} / c^{2} \oplus 1.3 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$ on the mass, where the error from $M_{\tilde{\chi}_{1}^{0}}$ largely dominates

Reminder: SPS1a' results (Phys. Rev.D82:055016,20010)

The previous $\tilde{\tau}$ study in the very similar model SPS1a' gave:

Results for $\tilde{\tau}_{1}$

$M_{\tilde{\tau}_{1}}=$
$107.73_{-0.05}^{+0.03} \mathrm{GeV} / \mathrm{c}^{2} \oplus 1.3 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$
The error from $M_{\tilde{\chi}_{1}^{0}}$ largely dominates

$$
\begin{aligned}
& \text { Results for } \tilde{\tau}_{2} \\
& M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} / \mathrm{c}^{2} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}}\right) \\
& \text { The error from the endpoint } \\
& \text { largely dominates }
\end{aligned}
$$

Results from cross-section for $\tilde{\tau}_{1}$

$$
\Delta\left(N_{\text {signal }}\right) / N_{\text {signal }}=3.1 \% \rightarrow
$$

$$
\Delta\left(M_{\tilde{\tau}_{1}}\right)=3.2 \mathrm{GeV} / c^{2}
$$

Results from cross-section for $\tilde{\tau}_{2}$

$$
\begin{aligned}
& \Delta\left(N_{\text {signal }}\right) / N_{\text {signal }}=4.2 \% \rightarrow \\
& \Delta\left(M_{\tilde{\tau}_{2}}\right)=3.6 \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

End-point + Cross-section

$$
\rightarrow \Delta\left(M_{\tilde{\chi}_{1}}\right)=1.7 \mathrm{GeV} / c^{2}
$$

Also: τ polarisation in $\tilde{\tau}_{1}$ decays

$\Delta\left(\mathcal{P}_{\tau}\right) / \mathcal{P}_{\tau}=9 \%$.

Outlook \& Conclusions

- Study best method to analyse spectra, eg
- Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ, and τ. - Make a coherent SGV study of all channels, at all $E_{C M S}$ stages.
- Status:

Outlook \& Conclusions

- Study best method to analyse spectra, eg
- Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ, and τ.
- Status:

Outlook \& Conclusions

- Study best method to analyse spectra, eg
- Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ, and τ.
- Make a coherent SGV study of all channels, at all $E_{C M S}$ stages.
- Also channels not studied in SPS1a'
- Exploit more complex decay cascades.

Outlook \& Conclusions

- Study best method to analyse spectra, eg
- Optimal statistic for clean signals.
- Specific reconstruction methods for e, μ, and τ.
- Make a coherent SGV study of all channels, at all $E_{C M S}$ stages.
- Also channels not studied in SPS1a'
- Exploit more complex decay cascades.
- Status:
- All signals generated.
- All Background exists at 500 , but $\gamma \gamma$ is missing at 250 \& 350 .
- At 500, good selections are at hand for the sleptons. In particular, $\tilde{\tau}_{1}$ compares well with SPS1a' analysis.
- Need to further study the parameter extraction for L-sleptons (SUSY background).
- Need the same for bosinos.

Thank You!

BACKUP

BACKUP SLIDES

Observables: Pair-production, two-body decay (less text)

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
becomes 0, width becomes average/2), so one should not operate
- Note that there are two decays in each event: two measurements per event.
Also note that there are not enough measurements to make a
constrained fit, even assuming that the two SUSY particles in the
two decays are the same: $(2 \times 4$ unknown components of
\square

Observables: Pair-production, two-body decay (less text)

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{\text {beam }} \gg M_{X}$, there is just one observable (low edge becomes 0 , width becomes average/2), so one should not operate too far above threshold!
Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: $(2 \times 4$ unknown components of 4-momentum (=8)) \square

Observables: Pair-production, two-body decay (less text)

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{\text {beam }} \gg M_{X}$, there is just one observable (low edge becomes 0 , width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.

two decays are the same: $(2 \times 4$ unknown components of
\square

Observables: Pair-production, two-body decay (less text)

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if $E_{\text {beam }} \gg M_{X}$, there is just one observable (low edge becomes 0 , width becomes average/2), so one should not operate too far above threshold!
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2×4 unknown components of 4-momentum $(=8))$ - (total E and p conservation $(=4)+2$

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.
Furthermore:

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in $\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell} \ell \rightarrow \ell \tilde{\chi}_{1}^{0}$ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are

Observables

But this is not all!

- The cross-section in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$ close to threshold depends both on coupling, spin and kinematics $(=\beta)$.
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle -> properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: $\operatorname{In} \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0} \rightarrow X \nu_{\tau} \tilde{\chi}_{1}^{0}$.

Observables

But this is not all !

- The cross-section in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$ close to threshold depends both on coupling, spin and kinematics $(=\beta)$.
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \rightarrow properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: $\operatorname{In} \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0} \rightarrow X \nu_{\tau} \tilde{\chi}_{1}^{0}$.

Observables

But this is not all!

- The cross-section in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$ close to threshold depends both on coupling, spin and kinematics $(=\beta)$.
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \rightarrow properties of the particles in the decay, ie. in addition to the produced X , also the

Observables

But this is not all!

- The cross-section in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X X$ close to threshold depends both on coupling, spin and kinematics $(=\beta)$.
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle \rightarrow properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: $\ln \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0} \rightarrow X \nu_{\tau} \tilde{\chi}_{1}^{0}$.

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010
Use polarisation (0.8,-0.22) to reduce bosino background.
From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{1}^{0}}$ and end-point of spectrum $=E_{\tau, \text { max }}$.
- Other end-point hidden in $\gamma \gamma$ background:Must get $M_{\tilde{\chi}_{1}^{0}}$ from other sources. ($\tilde{\mu}, \tilde{e}, \ldots)$
From cross-section:
- $\sigma_{\tilde{\tau}}=A\left(\theta_{\tilde{\tau}}, \mathcal{P}_{\text {beam }}\right) \times \beta^{3} / s$, so
- $M_{\tilde{\tau}}=E_{\text {beam }} \sqrt{1-(\sigma s / A)^{2 / 3}}$: no $M_{\tilde{\chi}_{1}^{0}}$!

From decay spectra:

- \mathcal{P}_{τ} from exclusive decay-mode(s): handle on mixing angles $\theta_{\tilde{\tau}}$ and $\theta_{\tilde{\chi}_{1}^{0}}$

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle थ properties:

- Only two particles (possibly $\tau: s: s)$ in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- Exactly two jets.
- $N_{c h}<10$
- Vanishing total charge.
- Charge of each jet $= \pm 1$
- $M_{j e t}<25 \mathrm{GeV} / \mathrm{C}^{2}$
- $E_{\text {vis }}$ significantly less than $E_{C M S}$.
- Mmiss significantly less than $M_{C M S}$
- No particle with momentum

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

ẽ properties:

- Only two particles (possibly $\tau: s: s)$ in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- $N_{c h}<10$
- Vanishing total charge.
- Charge of each jet $= \pm 1$,
- $M_{j e t}<2.5 \mathrm{GeV} / \mathrm{c}^{2}$,
- Evis significantly less than $\mathrm{E}_{\text {CMS }}$.
- $M_{\text {miss }}$ significantly less than $M_{\text {CMS }}$.
- No particle with momentum close to $\mathrm{E}_{\text {beam }}$.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

ẽ properties:

- Only two particles (possibly $\tau: s: s)$ in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
+ anti $\gamma \gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{c h}<10$
- Vanishing total charge.
- Charge of each jet $= \pm 1$,
- $M_{j e t}<2.5 \mathrm{GeV} / \mathrm{c}^{2}$,
- Evis significantly less than $\mathrm{E}_{\text {CMS }}$.
- $M_{\text {miss }}$ significantly less than $M_{\text {CMS }}$.
- No particle with momentum close to $\mathrm{E}_{\text {beam }}$.

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2} f u r t h e r ~ s e l e c t i o n s ~$

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2}$ further selections

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{\text {acop }}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2}$ further selections

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2}$ further selections

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{\text {acop }}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2} f u r t h e r ~ s e l e c t i o n s ~$

- $\tilde{\tau}_{1}:$
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2}$ further selections

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\tau}_{1}$ and $\tilde{\tau}_{2} f u r t h e r ~ s e l e c t i o n s ~$

- $\tilde{\tau}_{1}$:
- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<30$ GeV .
- $\tilde{\tau}_{2}$:
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

Efficiency 15 (22) \%

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\mathrm{L}} \tilde{\mu}_{\mathrm{L}} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- $\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow \mu \tilde{\mu}_{R} \tilde{\chi}_{1}^{0} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- Momentum of $\mu: \mathrm{s}$
- Emiss
- $\mathrm{M}_{\mu \mu}$

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\mathrm{L}} \tilde{\mu}_{\mathrm{L}} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- $\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow \mu \tilde{\mu}_{R} \tilde{\chi}_{1}^{0} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- Momentum of $\mu: \mathrm{s}$
- $\mathrm{E}_{\text {miss }}$
- $\mathrm{M}_{\mu \mu}$

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\mathrm{L}} \tilde{\mu}_{\mathrm{L}} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- $\tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow \mu \tilde{\mu}_{R} \tilde{\chi}_{1}^{0} \rightarrow \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$
- Momentum of μ :s
- Emiss
- $\mathrm{M}_{\mu \mu}$

Selections

- $\theta_{\text {missingp }} \in[0.1 \pi ; 0.9 \pi]$
- $E_{\text {miss }} \in[200,430] \mathrm{GeV}$
- $M_{\mu \mu} \notin[80.100] \mathrm{GeV}$ and >30 $\mathrm{GeV} / \mathrm{c}^{2}$
Masses from edges. Beam-energy spread dominates error.

$\tilde{\mu}_{\mathrm{L}} \tilde{\mu}_{\mathrm{L}}$

Selections

- $\theta_{\text {missingp }} \in[0.1 \pi ; 0.9 \pi]$
- $E_{\text {miss }} \in[200,430] \mathrm{GeV}$
- $M_{\mu \mu} \notin[80.100] \mathrm{GeV}$ and >30 GeV / c^{2}
Masses from edges. Beam-energy spread dominates error.

$\Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)=920 \mathrm{MeV} / c^{2}$
$\Delta\left(M_{\tilde{\mu}_{\mathrm{L}}}\right)=100 \mathrm{MeV} / c^{2}$

Selections

- $\theta_{\text {missingp }} \in[0.2 \pi ; 0.8 \pi]$
- $p_{\text {Tmiss }}>40 \mathrm{GeV} / c$
- β of μ system >0.6.
- $E_{\text {miss }} \in[355,395] \mathrm{GeV}$

Masses from edges. Beam-energy spread dominates error.

Selections

- $\theta_{\text {missingp }} \in[0.2 \pi ; 0.8 \pi]$
- $p_{\text {Tmiss }}>40 \mathrm{GeV} / c$
- β of μ system >0.6.
- $E_{\text {miss }} \in[355,395] \mathrm{GeV}$

Masses from edges. Beam-energy spread dominates error.
$\Delta\left(M_{\tilde{\chi}_{2}^{0}}\right)=1.38 \mathrm{GeV} / c^{2}$

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{\mathrm{e}}_{\mathrm{R}}}, M_{\tilde{\mu}_{\mathrm{R}}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to $<$ 1 GeV .

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{\mathrm{e}}_{\mathrm{R}}}, M_{\tilde{\mu}_{\mathrm{R}}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to $<$ 1 GeV .

So: Next step is $M_{\tilde{\mu}_{R}}$ from threshold:

- 10 points, $10 \mathrm{fb}^{-1} /$ point.
- Luminousity $\propto E_{C M S}$, so this is $\Leftrightarrow 170 \mathrm{fb}^{-1} @ E_{C M S}=500 \mathrm{GeV}$.

Error on $M_{\tilde{\mu}_{R}}=197 \mathrm{MeV}$

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{\mathrm{e}}_{\mathrm{R}}}, M_{\tilde{\mu}_{\mathrm{R}}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to $<$ 1 GeV .

So: Next step is $M_{\tilde{\mu}_{\mathrm{R}}}$ from threshold:

- 10 points, $10 \mathrm{fb}^{-1} /$ point.
- Luminousity $\propto E_{C M S}$, so this is $\Leftrightarrow 170 \mathrm{fb}^{-1} @ E_{C M S}=500 \mathrm{GeV}$.

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{\mathrm{e}}_{\mathrm{R}}}, M_{\tilde{\mu}_{\mathrm{R}}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to $<$ 1 GeV .

So: Next step is $M_{\tilde{\mu}_{\mathrm{R}}}$ from threshold:

- 10 points, $10 \mathrm{fb}^{-1} /$ point.
- Luminousity $\propto E_{C M S}$, so this is $\Leftrightarrow 170 \mathrm{fb}^{-1} @ E_{C M S}=500 \mathrm{GeV}$.

Error on $M_{\tilde{\mu}_{\mathrm{R}}}=197 \mathrm{MeV}$

