Outline	Introduction 0000	Calculation 00	Results 00000	Conclusions and outlook

High-energy particles in the FCAL detectors

S. Lukić

Vinča institute of nuclear sciences, University of Belgrade

Clustering WG meeting, 15 Dec 2014

S. Lukić, Clustering WG meeting, 15 Dec 2014 High-E particles in FCAL 1/19

Outline		Calculation		Conclusions and outlook
	0000	00	00000	00

Cross-section calculations

Results

Conclusions and outlook

Outline	Introduction	Calculation		Conclusions and outlook
	0000	00	00000	00

Introduction

S. Lukić, Clustering WG meeting, 15 Dec 2014 High-E particles in FCAL 3/19

- Influence of single particles from coincident Bhabha events (and other processes) on the luminosity measurement
- Influence of the luminosity spectrum and longitudinal boost on the 4f backgrounds in the luminosity measurement
- Coincident events and the electron tagging
- How important is the distinction of hadrons in the very forward region?
 - Relevant to particle-type distinction in the FCAL detectors and the L* (importance of LHCAL)
 - The answer given here is limited to the context of the luminosity measurement and electron tagging.

OutlineIntroductionCalculationResultsConclusions and outlookMost important processes emitting high-energy particles inthe FCAL angular range

- Bhabha scattering
 - High cross section
 - Cross-section scales with 1/s and with θ⁻³
 → large numbers of particles boosted into the FCAL angular
 range due to Beamstrahlung
- Four-fermion scattering
 - Main source of hadronic background
 - Can give a Bhabha-event signature

- Mimicking the signal signature
 - Relative systematic uncertainty defined by the ratio σ_B/σ_S after event selection
- Coincidence with the signal
 - Events that occur very often may add particles to signal events
 - Relative systematic uncertainty defined by the probability of occurence of the background event in 1 timestamp (note: no dependence on the signal xs)

- Luminosity measurement
 - High precision required
 - Sensitive to processes faking the signature AND to processes producing one-side hits with high probability
- Electron tagging
 - Improtant for analyses with missing energy in the signal signature and with strong backgrounds with spectator electrons
 - Sensitive to processes producing one-side hits with high probability leading to false electron tags

Outline	Calculation	Conclusions and outlook

Cross-section calculations

Outline		Calculation ●0		Conclusions and outlook 00
Cross-sect	ion calculati	on of relevan	t processes	

- WHIZARD 2.2 using luminosity files from Guinea-Pig
- FSR not simulated at this stage (will be added later)
- Difficulty: For processes with the exchange of photons in the T-channel and/or associated production of very light or massless fermions, the scattering amplitude changes orders of magnitude for small angles. Reweighting of the phase-space grid difficult
- Bhabha scattering: Cut on the momentum exchange mandatory. All calculated Bhabha xs relatively stable with $-\sqrt{Q^2} \lesssim -4$ GeV
- Four-fermion production:
 - Flavour summation gives **wrong** results because of nontrivial effect of particle masses on the cross sections
 - Reasonable stability of xs for t \overline{t} , $b\overline{b}$, $c\overline{c}$, $s\overline{s}$, $\tau^+\tau^-$, $\mu^+\mu^-$ produced alongside e^+e^- spectators
 - Difficult convergence for $e^+e^-u\overline{u}$, $e^+e^-d\overline{d}$ and $e^+e^-e^+e^-$ -Cross-check by scanning the mass-dependence of the xs or by imposing a cut on the $\sqrt{s_{f\bar{f}}}$

Dependence of the cross section for a fake Bhabha signature from the $e^+e^-q\overline{q}$ process

S. Lukić, Clustering WG meeting, 15 Dec 2014 High-E particles in FCAL 10/19

Outline	Calculation	Results	Conclusions and outlook

Results

S. Lukić, Clustering WG meeting, 15 Dec 2014 High-E particles in FCAL 11/19

Outline		Calculation 00	Results ●००००	Conclusions and outlook
Luminos	sity measuren	nent – 500 G	e\/ (

Process	cross-section	Rel. syst. unc.
	(un)	(uncorrected)
Signal	1.39	_
4f – lumi signature total	0.0063	4.5×10^{-3} (new)
4f – lumi signature hadrons	4.7×10^{-5}	$3.3 imes10^{-5}$
Coinc. Bhabha evts / one side	2.05	5.3×10^{-3}
4f total	0.087	2.4×10^{-4}
4f hadronic	0.0019	5.2×10^{-6}

• Lumi cut (one particle): E > 200 GeV, 41 mrad < heta < 67 mrad

• Lumi signature: Lumi cut + E_{CM} cut + 2-sides coincidence

Outline		Calculation 00	Results ○●○○○	Conclusions and outlook 00
Luminosit	v measurem	nent – 14 Te	V CLIC	

Process	cross-section	Rel. syst. unc.
	(nb)	(uncorrected)
Signal	0.147	_
4f – lumi signature total	0.00122	8.3×10 ⁻³
4f – lumi signature hadrons	2.0×10^{-5}	$1.4 imes10^{-4}$
Coinc. Bhabha evts / one side	0.35	0.019
4f total	0.017	9.0×10^{-4}
4f hadronic	0.0025	1.3×10^{-4}

• Lumi cut (one particle): E > 350 GeV, 43 mrad < heta < 80 mrad

• Lumi signature: Lumi cut + E_{CM} cut + 2-sides coincidence

Outline		Calculation 00	Results 00●00	Conclusions and outlook
Electron	i tagging – 50	0 GeV ILC		

Process	cross-section	Rel. syst. unc.
	(nb)	(uncorrected)
Bhabha – tagging cut	6.07	0.016
4f — tagging cut	0.312	$8.4 imes10^{-4}$
4f — tagging cut hadrons only	0.034	$9.1 imes10^{-5}$

 $\bullet\,$ Tagging cut: One particle, E > 100 GeV, $\theta>$ 30 mrad

Outline		Calculation 00	Results 000●0	Conclusions and outlook 00
Electron tagging – 1.4 TeV CLIC				

Process	cross-section	Rel. syst. unc.
	(nb)	(uncorrected)
Bhabha – tagging cut	1.30	0.068
4f — tagging cut	0.079	$4.3 imes10^{-3}$
4f — tagging cut hadrons only	0.015	$7.9 imes 10^{-4}$

 $\bullet\,$ Tagging cut: One particle, E > 200 GeV, $\theta>$ 30 mrad

<i>p⊤</i> cut	cross-section	<i>P_{hit}</i> (20 BX)
(GeV)	(nb)	%
5	0.212	1.14
10	0.152	0.82
20	0.103	0.56
50	0.055	0.30

• Cut (one particle): 140 mrad $< heta < \pi - 140$ mrad

Outline		Calculation	Results	Conclusions and outlook
	0000	00	00000	00

Conclusions and outlook

Outline		Calculation 00	Conclusions and outlook ●○
Conclusio	ns		

- Bhabha events represent an important background in the electron tagging context, but also in the luminosity measurement!
- Updated calculations for four-fermion production as a background for the luminosity measurement (luminosity spectrum and the longitudinal event boost taken into account)
 - 500 GeV ILC: $\sigma_{4f}/\sigma_{Bhabha} = 4.5 \times 10^{-3}$
 - 1.4 TeV CLIC: $\sigma_{4f}/\sigma_{Bhabha} = 8.8 \times 10^{-3}$
- Distinction of hadrons at low angles (in the FCAL or LHCAL detectors) is of little importance for the Luminosity measurement and electron tagging
- Free bonus: Precise measurements ($\delta\sigma/\sigma < 1\%$) at CLIC should take into account electrons coming from Bhabha scattering in the main detector.

Outline		Calculation 00	Conclusions and outlook ○●
To be d	one		

- Include FSR and tau decays small increase in 4f cross sections expected due to muons and taus emitting FSR
- Apply selections to coincident backgrounds in luminosity measurement (coplanarity; pick the most energetic electron on each side)
- Review the status of the uncertainty of the luminosity measurement