$\mathrm{BR}\left(h \rightarrow \tau^{+} \tau^{-}\right)$Study Status: $500 \mathrm{GeV} q \bar{q} h$ Study

Shin-ichi Kawada Hiroshima University

Current Results of 250 GeV Analysis

250 GeV 250 fb -1	$q \bar{q} h$	$e^{+} e^{-} h$	$\mu^{+} \mu^{-} h$	$v \bar{v} h$
$\frac{\Delta(\sigma \times \mathrm{BR})}{(\sigma \times \mathrm{BR})}$	3.4%	14.4%	11.3%	32.4%

performed Cut-based and TMVA both with using samples with proper tau polarization
TMVA: optimized input variables/training parameters
Next: 500 GeV analysis with proper tau pol. samples, starts from qqh mode

Signal \& Background at 500 GeV qqh

Signal

$$
e^{+} e^{-} \rightarrow Z h \rightarrow q \bar{q} \tau^{+} \tau^{-}
$$

Main background

$$
e^{+} e^{-} \rightarrow Z Z \rightarrow q \bar{q} \tau^{+} \tau^{-}
$$

Event Reconstruction

- Previous analysis

1. kT clustering 4 -jet \longleftarrow - this will erase some of
2. tau finder
3. Durham 2-jet physics signal object

- how to optimize?
- This time l'm trying

1. tau finder
need optimization:
not reconstructing overlay
2. kT clustering 2 -jet \longleftarrow easy optimization with
3. Durham 2-jet using Z mass

An example of
 Tau Finder Optimization

I set $E_{\text {PFo }}>2 \mathrm{GeV}$ for seed of tau clustering. Low energy particles are almost from overlay.

Optimizing kT clustering

Plot of the visible mass after tau selection. $\left(M_{Z}\right)=\left(M_{\text {vis }}\right.$ after tau selection) for ideal, but contaminated by overlay objects. I checked R = 0.5-1.4 (every 0.1), R = 0.9 was best.

Cut-based Analysis

Cut 0 (pre-cuts): \# of $q=2$, \# of $\tau^{+(-)}=1$
Cut 0.5 (basic cuts):
$8<=$ \# of tracks $<=70,140<E_{\text {vis }}<580,110<M_{\text {vis }}<575$,
$P_{t}>60$, thrust $<0.99, E_{\tau \tau}<320, M_{\tau \tau}<300, \cos \theta_{\tau \tau}<0.65$,
$50<E_{Z}<395,10<M_{Z}<375,30<E_{\text {col }}<450,5<M_{\text {col }}<360$
Cut 1: \# of tracks <= 67
Cut 2: P_{t} (all) > 5
Cut 3: thrust <0.94
Cut 4: $\left|\cos \theta_{\text {thrustaxis }}\right|<0.86$
Cut 5: $\left|\cos \theta_{\text {miss }}\right|<0.99$
Cut 6: $\cos \theta_{\tau \tau}<0.56$
Cut 7: $\log _{10}\left|d_{0} \operatorname{sig}\left(\tau^{+}\right)\right|+\log _{10}\left|d_{0} \operatorname{sig}\left(\tau^{-}\right)\right|>-0.3$
Cut 8: $\log _{10}\left|z_{0} \operatorname{sig}\left(\tau^{+}\right)\right|+\log _{10}\left|z_{0} \operatorname{sig}\left(\tau^{-}\right)\right|>0.3$
Cut 9: $E_{Z}>190$
Cut 10: $70<M_{Z}<110$
Cut 11: $110<M_{\text {col }}<140$
cut for collinear approximation: most important in this analysis

Cut Table and Results

表1 $500 \mathrm{GeV} q \bar{q} h$ Cut－based 解析の cut table。eX は $\times 10^{X}$ を表す。

	$\begin{gathered} q q h \\ h \xrightarrow{q} \tau \tau \end{gathered}$	$\begin{gathered} q q h \\ h \nrightarrow \tau \tau \end{gathered}$	$\begin{aligned} & \nu \nu h \\ & \ell \ell h \end{aligned}$	2 f	4 f	57	67	aa＿2f	aa＿4f	sig．
None	2131	3.260 e 4	9.397 e 4	1.320 e 7	1.598 e 7	6.895 e 4	5.888 e 5	9.829 e 8	1.041 e 5	0.0669
pre	1014	691.4	5223	8.181 e 5	6.224 e 5	6440	2.886 e 4	1.583 e 6	9619	0.578
basic	998.9	357.7	2631	5.919 e 4	1.781 e 5	3956	2.042 e 4	2.567 e 4	2273	1.84
\＃tracks	998.6	353.8	2628	5.916 e 4	1.780 e 5	3947	2.005 e 4	2.567 e 4	2270	1.84
$P_{t}($ all $)$	991.5	299.4	1972	3.636 e 4	1.375 e 5	3059	1.886 e 4	2.219 e 4	1695	2.10
thrust	978.8	297.3	1955	2.138 e 4	7.974 e 4	2999	1.881 e 4	1.220 e 4	1653	2.62
$\theta_{\text {thrustaxis }}$	883.2	273.8	1458	1.082 e 4	3.628 e 4	1388	1.476 e 4	4056	668.4	3.32
$\theta_{\text {miss }}$	875.6	259.9	1330	9066	3.273 e 4	1245	1.444 e 4	3863	543.0	3.45
$\theta_{\tau \tau}$	872.5	232.9	874.9	8425	3.038 e 4	1216	1.404 e 4	3818	521.6	3.55
d_{0} sig	849.4	173.8	584.7	5861	2.028 e 4	726.0	9900	1586	334.0	4.23
z_{0} sig	784.9	109.1	230.2	3533	9256	165.6	5241	159.7	80.55	5.61
E_{Z}	697.8	86.72	155.6	2073	4542	36.28	2461	14.83	15.93	6.95
M_{Z}	610.5	19.13	34.03	176.3	1836	11.20	181.7	5.207	7.968	11.4
$M_{\text {colapp }}$	515.2	3.047	4.187	2.634	116.9	1.718	15.21	0	0	20.1

remained $\mathrm{N}_{\text {sig }}=515.2, \mathrm{~N}_{\text {bkg }}=143.7$ $\frac{S}{\sqrt{S+B}}=20.1 \sigma \leftrightarrow \frac{\Delta(\sigma \times \mathrm{BR})}{(\sigma \times \mathrm{BR})}=5.0 \%$
not so changed than previous（4．9\％）

TMVA (BDTG) Analysis

- 14 variables
$-E_{\text {vis }}, P_{t}, P_{t}($ all $)$
$-M_{Z}, E_{Z}, \cos \theta_{q \bar{q}}, \cos \theta_{Z}$
$-M_{\tau \tau}, \cos \theta_{\tau \tau}, \cos \theta_{\mathrm{acop}}, \mathrm{d}_{0} \operatorname{sig}, ~ \mathrm{z}_{0} \operatorname{sig}$
$-M_{\mathrm{col}}, ~ E_{\mathrm{col}}$
- Training parameters
- nCuts $=45$, Shrinkage $=0.20$, MaxDepth $=3$, NTrees $=300$, nEventsMin $=250$

BDTG Results

Cut efficiencies and optimal cut value

TMVA overtraining check for classifier: BDTG

- TMVA

$\mathrm{N}_{\mathrm{sig}}=695.1, \mathrm{~N}_{\mathrm{bkg}}=335.8$
$\frac{S}{\sqrt{S+B}}=21.6 \sigma \leftrightarrow \frac{\Delta(\sigma \times \mathrm{BR})}{(\sigma \times \mathrm{BR})}=4.6 \%$

Summary and Plans

$500 \mathrm{GeV}, 500 \mathrm{fb}^{-1}$ $q \bar{q} h$ mode
 Cut-based

Next:

- tau finder study
--- current eff. = 49.8\% for tau+ and tau- reco.
--- tau+(tau-) reco. eff. = 70.6\%(70.6\%)
- Analysis of other signal process
$---v \bar{v} h, e^{+} e^{-} h, \mu^{+} \mu^{-} h(v \bar{v} h$ just started) --- need to get final results before JPS (Mar./21-24)

