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Overview - eνW
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There are 2 processes which contribute to eνqq events.

single-W process
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hadronic W mass

• W mass is directory measurable via hadron channel (W—>qq) 

• needs challenging requirements on JER and calibration 

• very sensitive and good for detector optimization because 
there is no ambiguity from jet clustering effect

final state : eνqq



Currently working on

• The first step to perform direct mW measurement is to find a 
proper model to describe the W invariant mass. 

• DBD sample, √s = 250 GeV for now 

• There can be 3 studies to do : 

• dynamics —> fitting generator level W mass 

• kinematics —> missing neutrinos from jets 

• detector effects —> jet energy and angle resolution
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Currently working on

• The first step to perform direct mW measurement is to find a 
proper model to describe the W invariant mass. 

• analysis with DBD sample, √s = 250 GeV for now 

• There can be 3 studies to do : 

• dynamics —> fitting generator level W mass 

• kinematics —> missing neutrinos from jets 

• detector effects —> jet energy and angle resolution
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Generator level W mass
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W mass line shape from eνW is well 
fitted with relativistic Breit-Wigner

where,
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mΓ is so-called “running width”
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(same convention is used for LEP2 W mass results)

fixed width BW cannot 
fit the data well
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Detector level W mass
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Red histogram : Reconstructed with perfect PFO 
Blue histogram : Generator level qq’ mass

fitting by convoluted function : 
detector effect is described as Gaussian

very large χ2 (χ2/ndf~200) came from : 
 - the effect of missing neutrinos 
 - detector effects 
     —> depend on E scale and jet angles

need to study these effects

Reconstructed 
L ~ 134 fb-1  

δmW ~ 5 MeV(stat.) 



Currently working on

• The first step to perform direct mW measurement is to find a 
proper model to describe the W invariant mass. 

• analysis with DBD sample, √s = 250 GeV for now 

• There can be 3 studies to do : 

• dynamics —> fitting generator level W mass (done) 

• kinematics —> missing neutrinos from jets 

• detector effects —> jet energy and angle resolution

7



Missing neutrinos in jets

• There can be missing neutrinos in quark jets 

• like as; c—>sW—>slν (—>uWlν—>ulνlν) 

• existence of these neutrinos reduce the measurable jet energy 

• This can be main reason that pulls measured W mass peak to lower value 

• this effect changes the shape of W mass distribution —> large χ2 in fitting
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W energy and mass scale shifts

• due to the effect of missing neutrinos in jet (and also the 
systematic from PFA?) 

• shifted 1-2% for each quark jet E 

• shifted 2-3% for W energy scale 

• shifted 4-5% for W mass scale
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Missing Eν estimation

• The existence of a lepton in a quark jet can give a indication 
that the jet actually contains a semi-leptonic decay 

• lepton and neutrino are pair,  e.g. c —> s l ν 

• Can I estimate the missing neutrino energy by looking 
leptons from each jet ? 

• if there is any strong correlation between Elepton and 
Emissing … 

• this is under investigation
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Leptons in composition of jet
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χ2/ndf value improved : ~200 —> ~15

• but still large χ2/ndf 
• there may be remained some 
systematics from detector effects

: cut to reduce the influence of missing νl energy

reconstructed W mass

if there is some correlation between 
ΣElepton and ΣEmiss , the W mass fitting 
result will be improved when the fraction 

of ΣElepton w.r.t. ΣEjet is small



Currently working on

• The first step to perform direct mW measurement is to find a 
proper model to describe the W invariant mass. 

• analysis with DBD sample, √s = 250 GeV for now 

• There can be 3 studies to do : 

• dynamics —> fitting generator level W mass (done) 

• kinematics —> missing neutrinos from jets (in progress) 

• detector effects —> jet energy and angle resolution
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• To calibrate the jet energy scale and understand similar 
detector effects, try to use Z mass reconstruction via ZZ—
>qqll event 

• strategy; 

1. reconstruct Z—>di-jet(hadronic) 

2. calibrate jet energy scale by using that precisely 
known value of mZ

hadronic  

3. also use Z mass distribution to understand other 
detector effects
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Z mass plots

large χ2 came from BG treatment; 
nothing considered so far

large χ2 mainly came from 
missing neutrinos momenta

leptonic Z mass distributionhadronic Z mass distribution

reconstructedreconstructed

- leptonic mass is less affected by missing neutrinos than hadronic one 
- relativistic BW convoluted with Gaussian would be able to fit the 
data very well if reasonable BG treatment can be met 

- to fit the hadronic Z mass, more proper function or reduction of 
systematics is necessary

hadronic Z mass leptonic Z mass



Summary

• We are now trying to do direct measurement of W mass via 
hadronic system (W—>qq’) 

• using eνW samples (single-W process included) 

• first on √s = 250 GeV 

• influence of missing energy from neutrinos in jet is now 
under investigation 

• jet energy scale calibration and detector effect study in 
progress
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Next

• after we obtained proper model to describe W mass and good 
jet energy calibration, 

• then we can change some detector simulation conditions to 
study systematic uncertainties 

• jet energy scale uncertainty 

• impact of different tune of PFA 

• parton shower and hadronization model 

• others to improve result 

• track energy correction (, pi0 fitting?) 

• kinematic fitting (missing energy from final state neutrino)
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Back up
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Simulation conditions

• First at √s = 250 GeV, polarization eLpR 

• 4 fermion DBD samples (sw_sl0qq) are used 

• eνqq final state events include both single-W and WW-
pair diagrams 

• note that WW processes are dominant at √s = 250 GeV 

• with no backgrounds so far 

• Detector model : ILD_o1_05 

• ILC soft version : v01-17-05
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mW reconstruction with perfect PFOs

jet clustering is performed 
by Durham algorithm

PFOs which came from ISRs, final state 
leptons(e and ν) and overlays(beam 
backgrounds) have already removed 

before jet clustering
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missing neutrino plots



particle identification

• electrons 

• charge != 0 

• 0.7 < (EECAL + EHCAL) / |p| < 1.4 

• 0.9 < EECAL / (EECAL + EHCAL) < 1.0 

• muons 

• charge != 0 

• 0.0 < (EECAL + EHCAL) / |p| < 0.3 

• 0.0 < EECAL / (EECAL + EHCAL) < 0.4 

• photons 

• charge == 0 

• 0.7 < (EECAL + EHCAL) / |p| < 1.3 

• EECAL / (EECAL + EHCAL) > 0.9
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semileptonic Z reconstruction

• ZZ—>qqll (background: Zγ—>qqll, γγ—>qqll) 

• Cuts (not optimized, performed with perfect PFA) 

• Number of isolated μ < 2 

• Mll
reco < 80 GeV, 105 GeV < Mll

reco  

• Ell
reco < 115 GeV, 135 GeV < Ell

reco  

• Mqq
reco < 60 GeV, 120 GeV < Mqq

reco  

• Eqq
reco < 100 GeV, 140 GeV < Eqq

reco 
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reconstructed Z mass
— hadronic 
— leptonic



single W diagrams (eνμν)
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