Higgs self-coupling measurement via vvHH (WW-fusion) @ 1 TeV ILC

Junping Tian (KEK)

The 40th General Meeting of ILC Physics Subgroup Jan. 24, KEK, Tsukuba

- ☑ DBD full simulation analyses (mH=120 GeV):
 ZHH @ 500 GeV, vvHH @ 1 TeV
- SGV fast simulation analysis: vvHH @ 1 TeV (consistent with full simulation)
- updating analysis of ZHH @ 500 GeV with mH=125 GeV and overlay: Claude, etc.
- □ updating analysis of vvHH @ 1 TeV: today's topic
- improvements of various analysis techniques and strategies; combine bb and WW* modes

LC-REP-2013-003 J. Tian @ LCWS14

C. Dürig @ AWLC14

$\Delta \lambda_{HHH} / \lambda_{HHH}$	500 GeV	+ 1 TeV
Baseline	83%	21%
LumiUP	46%	13%

500 GeV: 500 (1600) fb⁻¹ 1 TeV: 1000 (2500) fb⁻¹ including HH—>bbbb and HH—>bbWW*

M. Kurata @ ECFA2013

$e^+ + e^- \to \nu \bar{\nu} H H \to \nu \bar{\nu} (b\bar{b}) (b\bar{b})$

(full simulation @ 1 TeV, mH = 125 GeV; without $\gamma\gamma$ —>hadrons overlay case)

pre-selection:

- reject events with isolated lepton (done with MVA based IsolatedLeptonTagging processor)
- cluster all particles to four jets (Durham), each with at least 7 particles, 3rd Btagging > 0.2 (done within LCFIPlus processors); pair those four jets to two Higgs by minimising χ2 defined by two pair masses.

final-selection:

•	Visible energy < 900 GeV; Missing Mass > 0	(cut1)
•	tt-bar suppression (MVA): MLP_lvbbqq > 0.67	(cut2)
•	vvZZ and vvZH suppression (MVA): MLP_vvbbbb > 0.45	(cut3)

• B-tagging: Bmax3 + Bmax4 > 0.71 (cut4)

MVA output

inputs:

- Evis, MissPt, MissMass
- W mass case of tt4j and tt5j reconstruction
- tau mass in case of tt5j
- Pmax and Econe of leptons
- M(H1), M(H2)
- Y_{5-->4}

- two Z masses in case of vvZZ reconstruction
- Z and Higgs masses in case of vvZH reconstruction
- M(H1), M(H2)

see MVA details in LC-REP-2013-003

signal and backgrounds (reduction table)

 $P(e-,e+) = (-0.8,+0.2); \quad Ecm = 1 \text{ TeV}; \quad mH = 125 \text{ GeV}; \quad w/o \text{ overlay} \qquad \int L = 2 \text{ ab}^{-1}$ (preliminary)

	vvHH - WWF (vvbbbb)	vvHH (ZHH)	ννΖΗ	ννZZ	tt-bar	BG	significance
#expected	240	72.2	3.33E+03	1.72E+03	7.81E+05	7.86E+05	0.27
pre-selection	77.1(66)	23.3	472	781	2.97E+04	3.1E+04	0.44
cut1	75.2(64.4)	16	447	749	1.09E+04	1.21E+04	0.68
cut2	57.9(50.8)	5.48	260	227	397	890	1.9
cut3	33.5(29.4)	2.1	20.8	6.6	128	157	2.4
cut4	24.8(24.0)	1.57	12.1	3.34	6.86	23.9	3.6

nS = 24.8, $nB = 23.9 \sim 3.6\sigma$ (3.7 σ by previous extrapolation)

including overlay: $\gamma\gamma$ —>hadrons

the overlay has a significant impact at 1 TeV!

impact of overlay

by traditional kt algorithm to remove overlay, for R=1.2, there are still ~40% (energy) of overlay remained, and having ~5-15% of remained signal particles' total energy

a big trouble for jet-clustering

signal and backgrounds (reduction table)

 $L = 2 \text{ ab}^{-1}$

P(e-,e+) = (-0.8,+0.2); Ecm = 1 TeV; mH = 125 GeV; w/ overlay (very preliminary)

	vvHH - WWF (vvbbbb)	ννΗΗ (ZHH)	ννZH	ννΖΖ	tt-bar	BG	significance
#expected	240	72.2	3.33E+03	1.72E+03	7.81E+05	7.86E+05	0.27
pre-selection	69.1(54.5)	19	473	600	2.94E+04	3.05E+04	0.4
cut1	66.2(52.4)	12.2	438	570	5.51E+03	6.53E+03	0.82
cut2	54.4(44.1)	4.09	322	392	759	1.48E+03	1.4
cut3	19.6(16.5)	0.445	19	6	109	134	1.6
cut4	12.6(12.2)	0.299	7.51	2.24	1.97	12.0	2.7

nS = 12.6, $nB = 12.0 \sim 2.7\sigma$ (25% degradation than case w/o overlay!)

impact of overlay: some hints from detailed comparison

- found by looking into the components of each jet: in ~18% of all events, there are jets which are dominated by overlay particles.
- this immediately lead two signal efficiencies drop: cut on #particles in each jet; cut on smallest b-likeness
- then caused wider Higgs mass —> again signal efficiency drop by mass cut to keep similar level of background
- possible healing 1: to force signal b-vertices not be merged by jet-clustering (one new feature provided by LCFIPlus)
- possible healing 2: to develop better overlay removal algorithm (start from previous study based on particle-byparticle overlay tagging algorithm, reported at LCWS13)

summary

- analyses of vvHH @ 1 TeV are being updated with mH=125 GeV and γγ—>hadrons overlay, very preliminary results obtained.
- without overlay case, new results are very consistent with extrapolation from previous study done with mH=120 GeV.
- overlay <N>=4.1 at 1 TeV has a significant impact ~25% degradation; next step will focus on new strategies to heal this problem
- in addition to overlay, also think about improvements of other part of the analysis: new isolation; use tau finder to suppress further τvbbqq background; new jet clustering and pairing; cuts re-optimization for coupling instead of cross section, etc.

status and plan for 2015

Higgs self-coupling

- collaboration with Claude and Masakazu
- short-term: update vvHH @ 1 TeV analysis including overlay and mH=125 GeV, towards one publication
- mid-term: improve ZHH @ 500 GeV with kinematic fitting, matrix element method, cut re-optimization, etc.
- combine HH—>bbbb and HH—>bbWW*
- Matrix element method

- continue development with more complement set of e+e- processes
- try to implement detector transfer function and apply for analysis
- Color-singlet jet clustering
 - investigate the implementation of color correlation inside Pythia; to understand how color-singlet characteristics are implement in generator
 - combine the previous effort on Georgi Jet Clustering and Color-singlet Jet Clustering.

Backup

MVA overtraining test

MLP_lvbbqq

MLP_vvbbbb_vvbbh

DBD full simulation

Higgs self-coupling @ 1 TeV P(e-,e+)=(-0.8,+0.2) $e^+ + e^- \rightarrow \nu \bar{\nu} HH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$

	Expected	After Cut
vvhh (WW F)	272	35.7
vvhh (ZHH)	74	3.88
BG (tt/ $\nu\nu$ ZH)	7.86×10 ⁵	33.7
significance	0.3	4.29

- better sensitive factor
- benefit more from beam polarisation
- BG tt x-section smaller
- more boosted b-jets

Double Higgs excess significance: $> 7\sigma$

Higgs self-coupling significance: $> 5\sigma$

DBD analysis (no gam-gam overlay):

signal and backgrounds (reduction table) Polarization: (e-,e+)=(-0.8,+0.2) $E_{cm} = 1 \text{ TeV}, M_H = 120 \text{ GeV}$ $L = 2 \text{ ab}^{-1}$

	Expected	Generated	pre-selction	cut1	cut2	cut3	cut4
vvhh (WW F)	272	1.05×10^{5}	127	107	77.2	47.6	35.7
vvhh (ZHH)	74	2.85×10 ⁵	32.7	19.7	6.68	4.88	3.88
vvbbbb	650	2.87×10 ⁵	553	505	146	6.21	4.62
vvccbb	1070	1.76×10^{5}	269	242	63.3	2.69	0.19
уухуух	3.74×10 ⁵	1.64×10 ⁶	18951	4422	38.5	26.7	1.83
уухуеν	1.50×10 ⁵	6.21×10 ⁵	812	424	44.4	11	0.73
yyxylv	2.57×10 ⁵	1.17×10 ⁶	13457	4975	202	84.5	4.86
ννΖΗ	3125	7.56×10 ⁴	522	467	257	30.6	17.6
BG	7.86×10 ⁵		34597	11054	758	167	33.7
significance	0.3		0.68	1.01	2.67	3.25	4.29

 $\frac{\Delta\lambda}{\lambda} \approx 20\% \text{ (18\%)} \text{ (with weighting)}$ Double Higgs excess significance: 7.2σ

 $\frac{\Delta\sigma}{\sigma}\approx 23\%$

 σ

Preliminary results for 125 GeV without overlay $P(e,e+) = (-0.8,+0.3), fLdt = 2 ab^{-1}$

m_H= 120 GeV results extrapolated to 125 GeV give a precision of 53% on Higgs self-coupling preliminary results without overlay

	modes	signal	background	l sig	nificance	
				excess	measurement	
	$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ	
		3.3	6.0	1.12σ	0.91σ	
	$ZHH \rightarrow \nu \bar{\nu} HH$	5.2	6.9	1.63σ	1.37σ	
	$ZHH \rightarrow q\bar{q}HH$	9.2	20.9	1.82σ	1.64σ	
		7.7	23.5	1.45σ	1.31σ	
cro	ss section: $\frac{\Delta \sigma_{ZHH}}{\sigma_{ZHH}}$	= 32.69	%	Higgs self-	coupling: $\frac{\Delta\lambda}{\lambda}$	= 53%

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$				
scenario	Α	В	С		
extrapolated	53%	42%	34%		
full analysis	53%	42%	34%		

Extrapolation works, slightly conservative

Scenario	A: $HH \rightarrow bbbb$
Scenario	B: with HH \rightarrow bbWW*, $\approx 20\%$ improvement
Scenario	C: analysis improvement (kinematic fit, jet-
	clustering, etc.), expect 20% improvement

We achieve a precision of 53% on the Higgs self-coupling for $m_{\rm H}=125~{ m GeV}!$ Effect of $\gamma\gamma$ -overlay?

effect of overlay and strategy of removal: yy->hadrons

- exclusive kt algorithm.
- optimization: R-value and Njets

<N> = 1.7 (1.2) @ 500 GeV

R=1.3, Njets = 6 $\nu\nu$ HH—> $\nu\nu$ +4b Durham (No overlay) Durham (overlay) 0.06 Normalised kt (R = 0.8) kt (R = 1.3) kt (R = 1.57) 0.02 0 100 50 150 200

Higgs Mass [GeV]

impact of overlay on self-coupling

Preliminary results for 125 GeV with overlay

modes	signal	background	significance	
			excess	measurement
$ZHH \rightarrow I^-I^+HH$	2.7	5.9	0.91σ	0.72σ
	3.4	8.0	1.01σ	0.85 <i>o</i>
$ZHH \rightarrow \nu \bar{\nu} HH$	5.6	9.0	1.45σ	1.23σ
$ZHH \rightarrow q\bar{q}HH$	8.3	21.8	1.61σ	1.45σ
	8.7	38.2	1.31σ	1.21σ

cross section	$: \frac{\Delta \sigma_{ZHH}}{\sigma_{ZHH}} = 35.4\%$
---------------	---

Higgs self-coupling: $\frac{\Delta\lambda}{\lambda} = 58.1\%$

	500 GeV at $\mathcal{L}=2$ ab $^{-1}$				
scenario	A	В	С		
w/o overlay	53%	42%	34%		
w/ overlay	58%	47%	37%		

Scenario A: HH → bbbb
Scenario B: with HH → bbWW*, ≈ 20% improvement
Scenario C: analysis improvement (kinematic fit, jet-clustering, etc.), expect 20% improvement

Considering $\gamma\gamma$ -overlay, we achieve a precision of 58% on the Higgs self-coupling

1 TeV at $\mathcal{L}=2.5~{ m ab}^{-1}$		
А	В	С
16%	13%	10%
arXiv:1310.0763v3[hep-ph]		

Using additional WW-fusion data at 1 TeV we can achieve a precision of 10% on the Higgs self-coupling (w/o overlay)

Claude Fabienne Dürig | Higgs self-coupling at ILC | FLC group meeting, 25.08.2014 | 17/19

it has a significant impact (8% worse); with few more overlaid particles, some background can be more like signal; we still need look into some detail to improve this; on the other hand, <N> of overlay is currently over estimated.