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Introduction

Following an intense and successful R&D phase, the ILC has now achieved a state of maturity and
readiness, culminating recently with the publication of the Technical Design Report [1, 2, 3, 4, 5].
Several important physics goals at the TeV energy scale have motivated this effort. These include a
detailed study of the properties of the recently discovered Standard Model-like Higgs boson, including
precision measurements of its couplings to fermions and bosons, and an improved knowledge of the
top quark and W, Z boson interactions to a high level of precision. In all of these, the ILC will yield
substantial improvements over LHC measurements and will have a qualitative advantage on signatures
that have high backgrounds at LHC or are difficult to trigger on. Moreover, the ILC provides a
unique sensitivity in the search for signals of new physics beyond the Standard Model arising from
the electroweak production of new particles (assuming these are kinematically accessible), as well as
extending the probe of new interactions to higher mass scales via the precision measurements of W, Z
and two-fermion processes. In this way, the ILC experiments will be sensitive to new phenomena such
as supersymmetric partners of known particles, new heavy gauge bosons, extra spatial dimensions,
and particles connected with alternative theories of electroweak symmetry breakingt [2]. Indeed, the
ILC experiments will bring qualitatively new capabilities; detailed simulations with realistic detector
designs show that the ILC can reach the precision goals needed [5].

The requirements of the ILC [6] include tunability between center-of-mass energies of 200 and
500 GeV, with rapid changes in energy over a limited range for threshold scans. The luminosity, which
must exceed 1034 cm−2s−1 at 500 GeV, roughly scales proportionally with center-of-mass collision
energy. Highly polarized electrons (> 80%) are specified, with polarized positrons desirable. The TDR
design [3, 4] has met these specifications. R&D has achieved the accelerating gradient goal of 35
MV/m in test stands and 31.5 MV/m in installed cryomodules with beam loading. Cavity fabrication
to these specifications has been industrialized. The effects of the electron cloud in the positron
damping ring have been studied experimentally, leading to proven techniques for its mitigation. Fast
kickers needed for damping ring beam injection and ejection have been developed. The required small
final focus spot size is being demonstrated in a test facility. The final focus and interaction region,
including the detector push-pull system, has been designed. Two detailed detector designs have been
developed [5], with R&D supporting these designs. Beam tests with highly granular calorimeters have
demonstrated the calorimetry performance needed by using the particle flow technique. Similarly,
tracking R&D has advanced for vertex detection based on thin CMOS monolithic pixel sensors, outer
tracking with low-mass supported silicon microstrips, and advanced TPC technologies employing
micropattern gas detectors or silicon sensors for readout.

Recently, the Japanese government has expressed a desire to host the ILC, and international
negotiations are underway. In a staged approach, beginning at a center-of-mass energy of 250 GeV, a
physics program would start with precision measurements of the Higgs branching ratios and properties.
Raising the energy to 500 GeV would move to precision measurements of top quark properties well
beyond those possible at the LHC. Measurements of the top coupling to the Higgs and the Higgs self
coupling would begin at 500 GeV. Should there be accessible new particles such as supersymmetric
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partners of gauge bosons, Higgs bosons and leptons, the ILC with the power of polarized beams is the
only place where they can be studied in full detail. If there are additional Higgs boson states (which
are often difficult to observe at the LHC even if not too heavy), the ILC would be needed to measure
their masses, quantum numbers, and couplings to Standard Model particles. Extension of the ILC to
1 TeV is straightforward, with lengthened linac tunnels and additional cryomodules, building on the
original ILC sources, damping rings, final focus and interaction regions, and beam dumps.
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Chapter 1
Higgs Theory

1.1 Introduction: the Higgs mechanism

Quantum field theory has been enormously successful in describing the behavior of fundamental point
particles and their interactions in a framework that is consistent with the principles of relativity and
quantum mechanics. Indeed, once these principles are invoked, quantum field theory appears to be
the only consistent framework for incorporating interacting fundamental point particles. If such a
framework is to be predictive (i.e., dependent only on a finite number of input parameters that are
provided by experimental measurements), then the properties of such fundamental particles are highly
constrained—only spin 0, spin 1/2 and spin 1 are allowed [7, 8]. Moreover, if the spin 1 particles are
self-interacting, they must be described by a gauge theory. It is remarkable that this is precisely the
spectrum of fundamental particles that have been observed in nature.

A gauge theory of fundamental self-interacting spin-1 gauge bosons naively appears to require
that gauge bosons should be massless, since an explicit mass term for the gauge boson in the
Lagrangian manifestly violates the gauge symmetry. However, due to the seminal work of Brout,
Englert [9] and Higgs [10, 11] and subsequent work by Guralnik, Hagen and Kibble [12, 13, 14],
a mass-generation mechanism for gauge bosons that is consistent with the gauge symmetry was
developed. The simplest realization of this mechanism was subsequently employed by Weinberg,
when he incorporated a self-interacting complex scalar doublet into a gauge theory of electroweak
interactions [15]. The neutral scalar of the doublet acquires a vacuum expectation value (vev),
which spontaneously breaks the gauge symmetry and generates mass for the W± and Z bosons of
electroweak theory while leaving the photon massless. Moreover, by coupling the complex scalar
doublet to the chiral fermions of the Standard Model (where no gauge-invariant mass terms for the
fermions are allowed prior to symmetry breaking), one can also generate masses for all quarks and
charged leptons. In the Glashow-Weinberg-Salam theory of the electroweak interactions [15, 16, 17],
the gauge bosons acquire mass via the Higgs mechanism by absorbing three of the four degrees of
freedom of the complex scalar doublet, which provide for the longitudinal degrees of freedom of
the W± and Z bosons. One physical scalar degree of freedom is left over—the Higgs boson of the
Standard Model.

There are other possible dynamics that can be used for achieving a spontaneously broken gauge
theory of the electroweak interactions (via the Higgs mechanism) in which elementary scalar bosons
are not employed. For example, it is possible to spontaneously break a gauge theory by introducing
a strongly interacting fermion pair that condenses in the vacuum, in analogy with Cooper pairs of
superconductivity (for a nice review, see Ref. [18]). However, in the summer of 2012 a new scalar
boson was discovered at the LHC by the ATLAS and CMS Collaborations [19, 20], whose properties
appear to be consistent(within the experimental error) with those expected of the Standard Model
Higgs boson [21, 22, 23, 24]. Consequently, it appears that nature has chosen to realize the Higgs
mechanism via scalar fields that are either elementary or appear elementary at the electroweak scale.
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1 Higgs Theory

Although the scalar sector need not be a minimal one, the data seems to favors the existence of
one state of the scalar sector whose properties resemble those of the Standard Model Higgs bosons;
any deviations from Standard Model behavior, if they exist, are likely to be small. Clearly, precision
measurements of the newly discovered scalar state will be critical for establishing and testing the
theory that governs the dynamics of electroweak symmetry breaking.

1.1.1 Vector boson mass generation and the unitarity of V V → V V scattering (V = W or Z)

Consider the theory of electroweak interactions without the attendant scalar sector. If one attempts
to simply add an explicit mass term to the W± and Z bosons, then the resulting theory would be
mathematically inconsistent. One signal of this inconsistency would be revealed by using the theory
to compute the cross section for the scattering of longitudinally polarized gauge bosons, V V → V V

(where V = W or Z) at tree-level. Such a calculation would yield a scattering amplitude whose
energy dependence grows with the square of the center of mass energy, a result that grossly violates
unitarity. Such a result would be in violation of one of the sacred principles of quantum mechanics
(which requires that the sum of probabilities can never exceed unity).

It is remarkable that this tree-level unitarity violation can be mitigated by postulating the existence
of an elementary scalar particle that couples to W+W− and ZZ with coupling strength gm2

V /mW

(where V = W or Z). This new interaction introduces an additional contribution to V V → V V ,
which exactly cancels the bad high energy behavior of the scattering amplitude, and leaves a result
that approaches a constant at infinite energy. Thus, one can reconstruct the Standard Model by
imposing tree-level unitarity on all scattering amplitudes of the theory [25, 26, 27]. Thus, if the newly
discovered scalar h is to be interpreted as the Higgs boson of the Standard Model, one should confirm
that

ghV V =
√

2m2
V

v
, ghhV V =

√
2m2

V

v2 , (1.1)

where the Higgs vev, v = 174 GeV, is related to the W mass via mW = gv/
√

2.
Suppose deviations from eq. (1.1) were uncovered by experimental Higgs studies. Then, one

would surmise that the scalar Higgs sector is not minimal, and other scalar states play a role in
achieving tree-level unitarity [28]. Indeed, one can examine the case of an arbitrary scalar sector and
derive unitarity sum rules that replace eq. (1.1) in the more general Higgs model. We shall impose
one constraint on all extended Higgs sectors under consideration—the scalar multiplets and vevs
employed should satisfy the tree-level constraint that

ρ ≡ m2
W

m2
Z cos2 θW

= 1 , (1.2)

a result that is strongly suggested by precision electroweak measurements [29, 30]. For example,
consider a CP-conserving extended Higgs sector that has the property that ρ = 1 and no tree-level
ZW±φ∓ couplings (where φ± are physical charged scalars that might appear in the scalar spectrum),
then it follows that [28]

∑
i

g2
hiV V = 2m4

V

v2 , (1.3)

m2
W ghiZZ = m2

ZghiWW , (1.4)

where the sum in eq. (1.3) is taken over all neutral CP-even scalars hi. In this case, it follows that
ghiV V ≤ ghV V for all i (where h is the Standard Model Higgs boson). Models that contain only
scalar singlets and doublets satisfy the requirements stated above and hence respect the sum rule
given in eq. (1.3) and the coupling relation given in eq. (1.4). However, it is possible to violate

12



1.1 Introduction: the Higgs mechanism

ghiV V ≤ ghV V and m2
W ghiZZ = m2

ZghiWW if tree-level ZW±φ∓ couplings are present. Indeed, in
this case, one can show that doubly charged Higgs bosons must also occur in the model [28]..

1.1.2 Chiral fermion mass generation and the unitarity of V V → ff̄ scattering

In the Standard Model, left-handed fermions are electroweak doublets and right-handed fermions are
electroweak singlets. A fermion mass term would combine a left-handed and right-handed fermion
field, so that gauge invariance does not allow for explicit fermion mass terms. However, in the
Standard Model, it is possible to couple a left-handed and right-handed fermion field to the scalar
doublets. Such interactions comprise the Yukawa couplings of the Standard Model. When the scalar
field acquires a vev, mass terms for the quarks and charged leptons are generated.

One can repeat the previous analysis by again considering the theory of electroweak interactions
without the attendant scalar sector. If one attempts to simply add explicit mass terms to the
quarks and charged leptons and the W± and Z bosons, then the resulting theory would again be
mathematically inconsistent. One signal of this inconsistency would be revealed by using the theory
to compute the cross section for the scattering of longitudinally polarized gauge bosons into a pair
of top quarks, V V → tt̄ at tree-level. Such a calculation would yield a scattering amplitude whose
energy dependence grows with the the center of mass energy, which violates tree-level unitarity.

Once again, the addition of an elementary particle that couples to W+W− and ZZ with coupling
strength gm2

V /mW and couples to tt̄ with coupling strength gmt/(2mW ) is sufficient to cure the
bad high energy behavior. Thus, if the newly discovered scalar h is to be interpreted as the Higgs
boson of the Standard Model, one should confirm that

ghV V ghff = m2
Vmf

v2 , (1.5)

for all quarks and charged leptons f (in practice, f = t, b, c and τ are the most relevant). In models
of extended Higgs sectors, eq. (1.5) would be replaced by a unitarity sum rule in which the right-hand
side of eq. (1.5) would be the result of summing over multiple Higgs states in the model [28].
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1 Higgs Theory

1.2 Theoretical structure of the Standard Model Higgs boson

1.2.1 Tree level Higgs boson couplings

The Higgs sector of the Standard Model (SM), which takes the minimal form, consists of one isospin
doublet scalar field Φ with the hypercharge Y = 1 [31]. The most general SU(2)×U(1)-invariant
renormalizable Higgs potential is give by

V (Φ) = µ2|Φ|2 + 1
2λ|Φ|

4 . (1.6)

The Higgs doublet field is parameterized as

Φ =
(

ω+

v + (h+ iz)/
√

2

)
, (1.7)

where ω± and z represent the Nambu-Goldstone boson, h is a physical state, the Higgs boson, and
v = 174 GeV is the vacuum expectation value (vev) of the Higgs field. The self-coupling constant λ
is positive to guarantee the stability of vacuum. Assuming that µ2 < 0, the shape of the potential
resembles the Mexican hat, and the minimum of the scalar potential occurs at 〈Φ〉 = v, where
µ2 = −λv2. The SU(2)×U(1) electroweak symmetry is then broken down to U(1)EM. Expanding the
scalar field around its vacuum expectation value, the scalar potential immediately yields the mass and
the self-couplings of the Higgs boson h,

m2
h = 2λv2 , λhhh = 3

√
2λv , λhhhh = 3λ . (1.8)

Hence, the Higgs mass and self-couplings are related by

λhhh = 3m2
h

v
√

2
, λhhhh = 3m2

h

2v2 . (1.9)

That is, the Higgs mass is directly related to the dynamics of the Higgs sector. In particular, the
heavier the Higgs mass the stronger the strength of the Higgs self-couplings. Indeed, the observed
Higgs mass of 126 GeV implies that λhhhh ' 0.787, which implies that the Higgs dynamics is weakly
coupled.

The Higgs field couples to the weak gauge bosons (W and Z) via the covariant derivative [32],
|DµΦ|2, where Dµ = ∂µ + 1

2 igA
a
µτ

a + 1
2 ig
′BµY . Here, the τa are the usual Pauli matrices, the

electric charge operator is Q = 1
2 (τ3 +Y ), and g and g′ are gauge coupling constants for SU(2)T and

U(1)Y , respectively. The masses of the gauge bosons, which are generated by electroweak symmetry
breaking via the Higgs mechanism, are proportional to the neutral scalar field vev,

m2
W = 1

2g
2v2, m2

Z = 1
2 (g2 + g′2)v2. (1.10)

Electroweak symmetry breaking also generates the hWW and hZZ couplings,

g(hWW ) = 1√
2
g2v, g(hZZ) = 1√

2
(g2 + g′2)v. (1.11)

Therefore, the gauge boson masses and the couplings to the Higgs boson are related as noted
previously in eq. (1.1).

The Higgs field also couples to quarks and leptons via Yukawa interactions. For example, the
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1.2 Theoretical structure of the Standard Model Higgs boson

coupling of the Higgs fields to the three generations of quarks is given by

−LYukawa = Y 0ij
U (U 0i

L U
0j
R Φ0 ∗ −D 0i

L U
0j
R Φ−) + Y 0ij

D (D 0i
L D

0j
R Φ0 + U 0i

L D
0j
R Φ+) + h.c. , (1.12)

where i, j are generation labels, U0 = (u0, c0, t0) and D0 = (d0, s0, b0) are the interaction-eigenstate
quark fields, and Y 0

U and Y 0
D are arbitrary complex 3 × 3 matrices (the sum over repeated indices

is implied). In eq. (1.12) we have introduced left and right-handed quark fields via Q0
L ≡ PLQ

0

and Q0
R ≡ PRQ0 where PR,L ≡ 1

2 (1± γ5). Setting the Goldstone boson fields to zero and writing
Φ0 = v + h0/

√
2, we identify the quark mass matrices,

M0
U ≡ vY 0

U , M0
D ≡ vY 0

D . (1.13)

We now determine the quark mass eigenstate fields, U = (u, c, t) and D = (d, s, b) by introducing
the following unitary transformations,

UL = V UL U
0
L , UR = V UR U

0
R , DL = V DL D0

L , DR = V DR D0
R , (1.14)

where V UL , V UR , V DL , and V DR are unitary matrices chosen such that

MU ≡ V UL M0
UV

U †
R = diag(mu , mc , mt) , MD ≡ V DL M0

DV
D †
R = diag(md , ms , mb) ,

(1.15)
such that the mi are the positive quark masses (this is the singular value decomposition of linear
algebra).

Having diagonalized the quark mass matrices, the neutral Higgs Yukawa couplings are automati-
cally flavor-diagonal. That is, if we define

YU ≡ V UL Y 0
UV

U †
R = MD/v , YD ≡ V DL Y 0

UV
U †
D = MU/v , (1.16)

then eq. (1.12) can be rewritten in terms of quark mass eigenstates as:

−LYukawa = ULYUURΦ0 ∗ −DLK
†YUURΦ− + ULKYDDRΦ+ +DLYDDRΦ0 + h.c. , (1.17)

where
K ≡ V UL V

D †
L , (1.18)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Hence the SM possesses no flavor-changing neutral
currents (FCNCs) mediated by neutral Higgs boson exchange at tree-level. Note that independently of
the Higgs sector, the quark couplings to Z and γ are automatically flavor diagonal. Flavor dependence
only enters the quark couplings to the W± via the CKM matrix.

The Yukawa coupling of the Higgs doublets to the leptons can be similarly treated by replacing
U → N , D → E, MU → 0, MD →ME and K → 1, where N = (νe, νµ, ντ ), E = (e, µ, τ) and ME

is the diagonal charged lepton mass matrix. In the present treatment, the right-handed neutrino fields
are absent, in which case the neutrinos are exactly masses. One can accommodate the very small
neutrino masses by including the right-handed neutrino fields and adding a SU(2)×U(1)-invariant
mass term NLMNNR + h.c. to eq. (1.17). Assuming that the eigenvalues of MN are much larger
than the scale of electroweak symmetry breaking, one obtains three very light Majorana neutrino mass
eigenstates due to the seesaw mechanism [33, 34, 35, 36, 37]. The very small neutrino masses have
almost no impact on Higgs physics. Consequently, we shall simply treat the neutrinos as massless in
this chapter.

In the SM, there is an universal relation between the masses of the fundamental particles and
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Figure 1.1. The Standard Model prediction that the Higgs coupling to each particle is proportional to its mass.
Expected precision from the full ILC program for the coupling determination is also shown.

their couplings to the Higgs boson,

g(hWW )√
2m2

W

= g(hZZ)√
2m2

Z

= yc
mc

= yτ
mτ

= yb
mb

= yt
mt

=
√

2λ(hhh)
3m2

h

= · · · = 1
v
. (1.19)

This is a unique feature of the SM with one Higgs doublet field. By accurately measuring the mass
and coupling to the Higgs boson independently for each particle, one can test the mass generation
mechanism of the SM by using this relation. In Fig. 1.1, the Standard Model relation is shown along
with expected precision from the full ILC program for the coupling determinations. If the Higgs sector
takes a non-minimal form, deviations from this universal relation are expected. Each non-minimal
Higgs sector possesses a specific pattern of deviations. Thus, if the Higgs couplings can be measured
with sufficient precision, these measurements would provide a way to distinguish among different
models of extended Higgs sectors.
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1.2 Theoretical structure of the Standard Model Higgs boson

1.2.2 Higgs couplings at one-loop

The Higgs boson h is a charge and color neutral state; hence, it does not couple to photons and
gluons at the tree level. However, beyond the tree level, the coupling hgg, hγγ and hγZ appear via
the dimension-6 operators,

1
Λ2 |Φ|

2FµνF
µν ,

1
Λ2 |Φ|

2GµνG
µν . (1.20)

In the SM, the effective hgg coupling is induced at the one-loop level via quark-loop diagrams, with
the dominant contribution arising from the top quark loop. In contrast, the hγγ and hγZ couplings
are induced via the top loop diagram and the W-loop diagram in the SM. The leading contribution
to the coupling of hγγ is the W± boson loop, which is roughly 4.5 times larger in amplitude than
the contribution of the top quark loop. Analytic expressions for the h → gg decay width and the
diphoton partial width are given by [38, 39]

Γ(h→ gg) = GFα
2
sm

3
h

512
√

2π3

∣∣NcQ2
tA1/2(τt)

∣∣2 , (1.21)

Γ(h→ γγ) = GFα
2m3

h

128
√

2π3

∣∣A1(τW ) +NcQ
2
tA1/2(τt)

∣∣2 , (1.22)

where GF is the Fermi constant, Nc = 3 is the number of color, Qt = +2/3 is the top quark electric
charge in units of e, and τi ≡ 4m2

i /m
2
h (for i = t,W ). Below the WW threshold, the loop functions

for spin-1 (W boson) and spin-1/2 (top quark) particles are given in the Appendix in Ref. [40].
In the limit that the particle running in the loop has a mass much heavier than the Higgs, we

have
A1 → −7 , NcQ

2
t A1/2 →

4
3NcQ

2
t . (1.23)

For a Higgs mass below the WW threshold, the W boson contribution is always dominant and
monotonically decreasing from A1 = −7 for very small Higgs masses to A1 ≈ −12.4 at the threshold,
while the top quark contribution is well-approximated by the asymptotic value of (4/3)2 ≈ 1.78. If
we consider a Higgs mass at 126 GeV, the W and top contributions are

mh = 126 GeV : A1 = −8.32 , NcQ
2
tA1/2 = 1.84 . (1.24)

There have been many studies on the new physics loop contributions to the hgg as well as hγγ
couplings. Recently, Carena, Low and Wagner have performed a comprehensive study for the effects
on the diphoton width from adding new colorless charged particles of spin-0, spin-1/2, and spin-1,
which would interfere with the SM contributions [40].

In general, the contribution of a heavy particle in loop diagrams to a decay amplitude scales
inversely as a positive power of the corresponding particle mass. That is, in the infinite mass limit, the
effects of the heavy particle loops decouple, as a consequence of the decoupling theorem of Appelquist
and Carazzone [41]. However, the validity of the decoupling theorem depends on the assumption that
all couplings are held fixed. In cases where the origin of the heavy particle mass is due to electroweak
symmetry breaking, the squared-mass of the boson or the mass of the fermion is proportional to
the vacuum expectation value as indicated in eq. (1.19), and the constant of proportionality is the
corresponding Higgs coupling. Thus in this case, one can only take the limit of large mass by taking
the corresponding Higgs coupling to be large. As a result, the corresponding contribution of such
particles in loop diagrams do not decouple.

For example, the loop contributions of weak gauge bosons (W and Z) and chiral fermions such
as the top quark to h→ gg and h→ γγ are examples where the corresponding one-loop contributions
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to the decay amplitudes approach a constant in the large mass limit. Non-decoupling effects can
also appear in radiative corrections to various observables. As a dramatic example, the one loop
correction to the triple Higgs boson coupling hhh is large because it receives a non-decoupling effect
proportional to the quartic power of the top quark mass after renormalization [42, 43],

λren
hhh '

3m2
h√

2 v

(
1− Ncm

4
t

16π2

)
. (1.25)

In theories that go beyond the Standard Model (BSM), new particles may exist that couple
to the Higgs boson. For example, new bosonic loops yield positive contributions and fermionic
loops yield negative contributions to the hhh coupling. The loop induced couplings hgg, hγγ, hZγ
and the radiatively-corrected hhh coupling are particularly sensitive to new particles in the loop
when electroweak symmetry breaking provides the dominant contributions to the corresponding new
particle masses. Thus, the couplings of the Higgs boson to SM fields can exhibit deviations from SM
predictions due to BSM loop effects even when the corresponding tree-level couplings are fixed to
their SM values.

The non-decoupling contribution of new particles can affect the effective potential at finite
temperatures. For example, a new bosonic loop contribution can make the electroweak phase transition
sufficiently strongly first order as required for a successful scenario of electroweak baryogenesis [44, 45].
Such a non-decoupling effect results in a large deviation in the hhh coupling, so that one can test
this scenario by measuring the hhh coupling accurately. In Ref. [46], the correlation between the
condition for a first order phase transition and the deviation in the hhh coupling is studied. To test
this scenario of electroweak baryogenesis requires a determination of the hhh coupling with a 10–20%
accuracy. A measurement of the hhh coupling with the required precision can be achieved at the ILC
as shown in Section 5.6.

1.2.3 Higgs decays

The Higgs boson couples to all the particles of the SM. Therefore, there are many decay modes. In
particular, with the mass of about 126 GeV the Higgs boson decays into bb̄, WW ∗, τ+τ−, gg, cc̄,
ZZ∗, γγ and γZ, µµ, where γγ and γZ are one-loop induced decay processes.

In Fig. 1.2, branching ratios for various decay modes are shown as a function of the mass of the
Higgs boson. The decay branching ratios strongly depend on the mass of the Higgs boson mh. In
Tables 1.1 and 1.2, the predicted values of decay branching ratios of the Standard Model Higgs boson
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Figure 1.2. Branching ratio of the Higgs boson in the SM as a function of the mass.

18
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Table 1.1. The Standard Model values of branching ratios of fermionic decays of the Higgs boson for each value of
the Higgs boson mass mh.

mh (GeV) bb̄ τ+τ− µ+µ− cc̄ ss̄
125.0 57.7 % 6.32 % 0.0219 % 2.91 % 0.0246 %
125.3 57.2 % 6.27 % 0.0218 % 2.89 % 0.0244 %
125.6 56.7 % 6.22 % 0.0216 % 2.86 % 0.0242 %
125.9 56.3 % 6.17 % 0.0214 % 2.84 % 0.0240 %
126.2 55.8 % 6.12 % 0.0212 % 2.81 % 0.0238 %
126.5 55.3 % 6.07 % 0.0211 % 2.79 % 0.0236 %

Table 1.2. The Standard Model values of branching ratios of bosonic decays of the Higgs boson for each value of
the Higgs boson mass mh. The predicted value of the total decay width of the Higgs boson is also listed for each
value of mh.

mh (GeV) gg γγ Zγ W+W− ZZ ΓH (MeV)
125.0 8.57 % 0.228 % 0.154 % 21.5 % 2.64 % 4.07
125.3 8.54 % 0.228 % 0.156 % 21.9 % 2.72 % 4.11
125.6 8.52 % 0.228 % 0.158 % 22.4 % 2.79 % 4.15
125.9 8.49 % 0.228 % 0.162 % 22.9 % 2.87 % 4.20
126.2 8.46 % 0.228 % 0.164 % 23.5 % 2.94 % 4.24
126.5 8.42 % 0.228 % 0.167 % 24.0 % 3.02 % 4.29

are listed for mh = 125.0, 125.3, 125.6, 125.9, 126.2 and 126.5 GeV [47]. In Table 1.2 the predicted
values of the total decay width of the Higgs boson are also listed. It is quite interesting that with
a Higgs mass of 126 GeV, a large number of decay modes have similar sizes and are accessible to
experiments. Indeed, the universal relation between the mass and the coupling to the Higgs boson for
each particle shown in Fig. 1.1 can be well tested by measuring these branching ratios as well as the
total decay width accurately at the ILC. For example, the top Yukawa coupling and the triple Higgs
boson coupling are determined respectively by measuring the production cross sections of top pair
associated Higgs boson production and double Higgs boson production mechanisms.

1.2.4 Higgs production at the ILC

At the ILC, the SM Higgs boson h is produced mainly via production mechanisms such as the
Higgsstrahlung process e+e− → Z∗ → Zh (Fig. 1.3 Left) and the the weak boson fusion processes
e+e− → W+∗W−∗νν̄ → hνν̄ (Fig. 1.3 (Middle)) and e+e− → Z∗Z∗e+e− → he+e−. The
Higgsstrahlung process is an s-channel process so that it is maximal just above the threshold of the
process, whereas vector boson fusion is a t-channel process which yields a cross section that grows
logarithmically with the center-of-mass energy. The Higgs boson is also produced in association with
a fermion pair. The most important process of this type is Higgs production in association with a top
quark pair, whose typical diagram is shown in Fig. 1.3 (Right). The corresponding production cross
sections at the ILC are shown in Figs. 1.4 (Left) and (Right) as a function of the collision energy by
assuming the initial electron (positron) beam polarization to be −0.8 (+0.2).

The ILC operation will start with the e+e− collision energy of 250 GeV (just above threshold for
hZ production), where the Higgsstrahlung process is dominant and the contributions of the fusion
processes are small, as shown in Fig. 1.4 (Left) . As the center-off-mass energy,√s increases, the
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Figure 1.3. Two important Higgs boson production processes at the ILC. The Higgsstrahlung process (Left), the
W-boson fusion process (Middle) and the top-quark association (Right).
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Figure 1.4. (Left)The production cross sections of the Higgs boson with the mass of 125 GeV at the ILC as a
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Figure 1.5. Typical diagrams for double Higgs boson production via off-shell Higgsstrahlung (Left) and W -boson
fusion (Right) processes.

Higgsstrahlung cross-section falls off as 1/s. Consequently, the W -boson fusion mechanism is more
significant at higher energies, and its production cross section grows logarithmically and becomes
larger than that of the Higgsstrahlung cross section for √s > 450 GeV. At √s = 500 GeV, both
the Higgsstrahlung process and the W-boson fusion process are important, and at √s = 1 TeV the
W-boson fusion is dominant. The cross section of e+e− → tt̄h is shown in Fig. 1.4 (Right) . The
threshold of the production process is roughly 480 GeV, so that the tt̄h cross section can be measured
at the ILC with the energy of 1 TeV.

Finally, the triple Higgs boson coupling can be determined from measuring the double Higgs
production mechanisms e+e− → Zhh and e+e− → νν̄hh by extracting the contribution of the
Feynman diagram shown in Fig. 1.5. The production cross section for the Zhh process is typically of
the order of 0.1 fb at the collision energy just above the threshold at about 400 GeV as shown in
Fig. 1.4(Right). At the ILC with a center-of-mass energy of 500 GeV, the triple Higgs boson coupling
can be measured via this process. On the other hand, at higher energies the cross section of the
fusion process e+e− → νν̄hh becomes larger. This process becomes relevant for the measurement of
the triple Higgs boson coupling at the energies around 1 TeV.
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1.2.5 Vacuum Stability

The mass of the Higgs boson is proportional to the strength of the Higgs self-coupling λ via m2
h = 2λv2.

The magnitude of λ at high energies can be predicted from the size of λ at the electroweak scale
by using the renormalization group equation (RGE). The RGE for the coupling constant λ is given
by [48]

16π2µ
d

dµ
λ = 12(λ2 + λy2

t − y4
t )− 3λ(3g2 + g′ 2) + 3

4
[
2g4 + (g2 + g′ 2)2]+ . . . , (1.26)

where the . . . indicates terms proportional to the Yukawa couplings of the five light quarks and the
charged leptons, which can be neglected in first approximation. If the mass is large, λ is large and the
β-function is positive. Then, λ is larger for higher energies and blows up at some high energy point
(the Landau pole), which can be below the Planck scale. In contrast, when the mass is small and the
β-function is negative due to the term proportional to the fourth power of the top-quark Yukawa
coupling. In this case, the coupling λ decreases as the energy scale increases and finally becomes
negative. If λ is driven negative below the Planck scale (at which point quantum gravitational effects
would have to be taken into account), then we could conclude that electroweak vacuum is not the
global minimum, since either a deeper scalar potential minimum exists or the scalar potential is
unbounded from below. In either case, the electroweak minimum would no longer be stable. By
assuming that the electroweak minimum is stable up to a given high energy scale Λ, below which the
coupling λ does not blow up nor is driven negative, one can derive upper and the lower Higgs mass
bounds as a function of Λ.

Given that the mass of the Higgs boson is now known to be around 126 GeV, which corresponds
to λ ∼ 0.26 at the electroweak scale, it follows that the β-function is negative. The recent RGE
analysis in the NNLO approximation [49] shows that the scale Λ where λ becomes negative is between
107 GeV to 1015 GeV at the 3σ level. The main uncertainty comes from the top quark mass, αs, and
the theoretical uncertainties in QCD corrections. When the mass of the top quark is measured with
the accuracy of about 30 MeV at the ILC, the cut-off scale of the SM can be much better determined,
as exhibited by Fig. 1.6.

With a Standard Model Higgs mass of 126 GeV, the central value of λ is negative at the Planck
scale. Therefore, the electroweak vacuum is not stable in the Standard Model unless new physics
enters below the Planck scale. However, if we only require that the electroweak vacuum is metastable,

Figure 1.6. Left: RG evolution of λ varying Mt and αs by ±3σ. Right: Regions of absolute stability, metastability
and instability of the SM vacuum in the Mt–Mh plane in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3σ). The three boundaries lines correspond to αs(MZ) =
0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical error. The dotted contour-lines
show the instability scale Λ in GeV assuming αs(MZ) = 0.1184.
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with a lifetime considerably longer than the age of the Universe, then Fig. 1.6 indicates that the
Standard Model can be valid with no new physics required all the way up to the Planck scale.

Finally, note that the bound from vacuum stability is largely relaxed when extended Higgs sectors
are considered where the lightest scalar behaves like the SM Higgs boson[50, 51]. For example, if we
consider the scalar sector with two Higgs doublets, the cut off scale where the vacuum stability is
violated can be easily above the Planck scale. Due to the loop contribution of extra scalar fields, the
beta-function of the quartic coupling constant of the SM-like Higgs boson is in general larger than
that in the SM. Therefore, the cutoff scale is higher than that of the SM.

1.3 The two-Higgs-doublet model (2HDM)

Given that there are multiple generations of quarks and leptons, it is reasonable to consider the
possibility that the Higgs sector of electroweak theory is also non-minimal. The introduction of the
two-Higgs doublet extension of the Standard Model (2HDM) [52] was motivated for various reasons
over the years. It was initially introduced to provide a possible new source of CP violation mediated
by neutral scalars [53]. Subsequently, the 2HDM was studied for phenomenological reasons, as it
provides for new scalar degrees of freedom including a charged Higgs pair, a neutral CP-odd Higgs
scalar in the case of a CP-conserving scalar potential and neutral scalars of indefinite CP in the case
of a CP-violating scalar potential and/or vacuum [31]. These features yield new phenomenological
signals for the production and decay of fundamental spin-0 particles.

Today, the main motivation for the 2HDM is connected with models of TeV-scale supersymmetry.
Such models provide the only natural framework for weakly-coupled fundamental scalar particles (for
further details, see Section 1.6). In particular, the minimal supersymmetric extension of the Standard
Model (MSSM) requires a Higgs sector with at least two Higgs doublet fields. The MSSM Higgs
sector is a 2HDM that is highly constrained by supersymmetry. The structure of the MSSM Higgs
sector will be explored further in Section 1.3.10.

The most general version of the 2HDM, which contains all possible renormalizable terms (mass
terms and interactions) allowed by the electroweak gauge invariance, is not phenomenologically viable
due to the presence of Higgs–quark Yukawa interaction terms that lead to tree-level Higgs-mediated
flavor changing neutral currents (FCNCs) [54, 55]. Such effects are absent in the MSSM Higgs sector
due to the constraints imposed by supersymmetry on the Yukawa interactions. In non-supersymmetric
versions of the 2HDM, one can also naturally avoid FCNCs by imposing certain simple discrete
symmetries on the the scalar and fermion fields, as discussed in Section 1.3.7. These symmetries
reduce the parameter freedom of the 2HDM and automatically eliminate the dangerous FCNC
interactions. Nevertheless, it is instructive to examine the structure of the most general 2HDM, as
constrained versions of the 2HDM can then be examined as limiting cases of the most general 2HDM.

1.3.1 Model-independent treatment

The scalar fields of the 2HDM are complex SU(2) doublet, hypercharge-one fields, Φ1 and Φ2, where
the corresponding vevs are 〈Φi〉 = vi, and v2 ≡ |v1|2 + |v2|2 = (174 GeV)2 is fixed by the observed
W mass, mW = gv/

√
2. The most general renormalizable SU(2)×U(1) scalar potential is given by

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.] + 1

2λ1(Φ†1Φ1)2 + 1
2λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+λ4(Φ†1Φ2)(Φ†2Φ1) +
{

1
2λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
. (1.27)

In the most general 2HDM, the fields Φ1 and Φ2 are indistinguishable. Thus, it is always
possible to define two orthonormal linear combinations of the two doublet fields without modifying
any prediction of the model. Performing such a redefinition of fields leads to a new scalar potential
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with the same form as eq. (1.27) but with modified coefficients. This implies that the coefficients
that parameterize the scalar potential in eq. (1.27) are not directly physical [56].

To obtain a scalar potential that is more closely related to physical observables, one can introduce
the so-called Higgs basis in which the redefined doublet fields (denoted below by H1 and H2 have
the property that H1 has a non-zero vev whereas H2 has a zero vev [57]. In particular, we define new
Higgs doublet fields:

H1 =
(
H+

1

H0
1

)
≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

(
H+

2

H0
2

)
≡ −v2Φ1 + v1Φ2

v
. (1.28)

It follows that 〈H0
1 〉 = v and 〈H0

2 〉 = 0. The Higgs basis is uniquely defined up to an overall rephasing,
H2 → eiχH2 (which does not alter the fact that 〈H0

2 〉 = 0). In the Higgs basis, the scalar potential
is given by [56, 57]:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] + 1

2Z1(H†1H1)2 + 1
2Z2(H†2H2)2 + Z3(H†1H1)(H†2H2)

+Z4(H†1H2)(H†2H1) +
{

1
2Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
, (1.29)

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5, Z6 and Z7 are complex
and transform under the rephasing of H2,

[Y3, Z6, Z7]→ e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 . (1.30)

After minimizing the scalar potential, Y1 = −Z1v
2 and Y3 = −Z6v

2. This leaves 11 free parameters:
1 vev, 8 real parameters, Y2, Z1,2,3,4, |Z5,6,7|, and two relative phases.

If Φ1 and Φ2 are indistinguishable fields, then observables can only depend on combinations
of Higgs basis parameters that are independent of χ. Symmetries, such as discrete symmetries or
supersymmetry, can distinguish between Φ1 and Φ2, which then singles out a specific physical basis
for the Higgs fields, and can yield additional observables such as tan β ≡ |v2|/|v1| in the MSSM.

In the general 2HDM, the physical charged Higgs boson is the charged component of the
Higgs-basis doublet H2, and its mass is given by

m2
H± = Y2 + Z3v

2 . (1.31)

The three physical neutral Higgs boson mass-eigenstates are determined by diagonalizing a 3× 3 real
symmetric squared-mass matrix that is defined in the Higgs basis [57, 58]

M2 = 2v2

 Z1 Re(Z6) −Im(Z6)
Re(Z6) 1

2 (Z345 + Y2/v
2) − 1

2 Im(Z5)
−Im(Z6) − 1

2 Im(Z5) 1
2 (Z345 + Y2/v

2)− Re(Z5)

 , (1.32)

where Z345 ≡ Z3 + Z4 + Re(Z5).The diagonalizing matrix is a 3 × 3 real orthogonal matrix that
depends on three angles: θ12, θ13 and θ23. Under the rephasing H2 → eiχH2 [58],

θ12 , θ13 are invariant, and θ23 → θ23 − χ . (1.33)

By convention, we choose
− 1

2π ≤ θ12 , θ13 <
1
2π . (1.34)

It is convenient to define invariant combinations of θ12 and θ13, denoted by qk1 and qk2 in
Table 1.3 below, where k = 1, 2, 3 corresponds to the associated neutral Higgs mass eigenstate hk [58].

23



1 Higgs Theory

Table 1.3. Invariant combinations of neutral Higgs mixing angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij .

k qk1 qk2
1 c12c13 −s12 − ic12s13
2 s12c13 c12 − is12s13
3 s13 ic13

The physical neutral Higgs states (h1,2,3) are then given by:

hk = 1√
2

{
q∗k1
(
H0

1 − v
)

+ q∗k2H
0
2e
iθ23 + h.c.

}
. (1.35)

It is convenient to choose the mass ordering of the states such that m1 < m2,3. The mass ordering
fixes the neutral Higgs mixing angles θ12 and θ13. Although the explicit formulae for the Higgs masses
and mixing angles are quite complicated, there are numerous relations among them which take on
rather simple forms. The following results are noteworthy [58, 59]:

2Z1v
2 = m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 , (1.36)

2Re(Z6 e
−iθ23) v2 = c13s12c12(m2

2 −m2
1) , (1.37)

2Im(Z6 e
−iθ23) v2 = s13c13(c212m

2
1 + s2

12m
2
2 −m2

3) , (1.38)

2Re(Z5 e
−2iθ23) v2 = m2

1(s2
12 − c212s

2
13) +m2

2(c212 − s2
12s

2
13)−m2

3c
2
13 , (1.39)

Im(Z5 e
−2iθ23) v2 = s12c12s13(m2

2 −m2
1) . (1.40)

If we also define the physical charged Higgs state by H± = e±iθ23H±2 , then all the Higgs mass
eigenstate fields (h1, h2, h3 and H±) are invariant under the rephasing H2 → eiχH2. Thus, we have
established a second well-defined basis of the general 2HDM, which corresponds to the mass-eigenstate
basis for the neutral Higgs bosons.

1.3.2 Constraints on 2HDM scalar potential parameters

The assumption of tree-level unitarity in the scattering of longitudinal gauge bosons yields via the
equivalence theorem upper bounds on the quartic couplings of the scalar potential. The bounds are
rather simple when expressed in the Higgs basis. For example, the following bounds obtained in
Ref. [59] are based on single channel scattering processes,

|Z1| < 4π , |Z3| < 8π , |Z3 + Z4| < 8π , |Re(Z5e
−2iθ23)| < 2π ,

|Im(Z5e
−2iθ23)| < 8π , |Re(Z6e

−iθ23)| < 2π |Im(Z6e
−iθ23)| < 8

3π . (1.41)

There are no unitarity restrictions at tree-level on Z2 and Z7 as these quantities are absent from the
neutral scalar mass matrix. One can obtain somewhat improved tree-level bounds by considering
multi-channel scattering processes and analyzing the eigenvalues of the corresponding amplitude
matrices. If the |Zi| are too large, then the scalar sector becomes strongly coupled, and the tree-level
unitarity bounds become suspect. Nevertheless, it is common practice to consider weakly-coupled
scalar sectors, in which case one should not allow any of the |Zi| to become too large. For practical
purposes, we shall assume that |Zi| . 2π, in order to maintain unitarity and perturbativity of tree-level
amplitudes.

Additional constraints on the 2HDM scalar potential parameters arise from the analysis of
precision electroweak observables, which are sensitive to Higgs bosons via loop corrections to Standard
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Model processes. The S, T , and U parameters, introduced by Peskin and Takeuchi [60], are
independent ultraviolet-finite combinations of radiative corrections to gauge boson two-point functions
(the so-called “oblique” corrections). The parameter T is related to the well known ρ-parameter of
electroweak physics [61] by ρ− 1 = αT . The oblique parameters can be expressed in terms of the
transverse part of the gauge boson two-point functions. For example,

αT ≡ Πnew
WW (0)
m2
W

− Πnew
ZZ (0)
m2
Z

, (1.42)

where α ≡ e2/(4π) is the electromagnetic coupling defined in the MS scheme evaluated at mZ .
The Πnew

VaVb
are the new physics contributions to the one-loop Va—Vb vacuum polarization functions

(where V = W or Z). New physics contributions are defined as those that enter relative to the
Standard Model with the Higgs mass fixed to its observed value. The definition of the two other
oblique parameters S and U can be found in Ref. [29].

Explicit expressions for S, T and U in the general 2HDM have been written down and the
numerical contributions of the 2HDM states (relative to that of the SM) to the oblique parameters in
the 2HDM have been studied in Refs. [59, 62, 63, 64]. The general conclusion is that corrections to S
and U due to the contribution of the Higgs sector are small, consistent with the present experimental
limits. However, the contributions to T may or may not be significant depending on the amount
of custodial symmetry breaking introduced by the 2HDM scalar potential. Indeed, in Ref. [59] it is
shown that a custodial symmetric scalar potential is one in which CP is conserved and in addition,
the following condition is satisfied,

Z4 =


ε56|Z5| , for Z6 6= 0 ,

ε57|Z5| , for Z7 6= 0 ,

±|Z5| , for Z6 = Z7 = 0 ,

(1.43)

where the two sign factors, ε56 and ε57 are defined by:

ε56 = Z∗5Z
2
6 = ε56|Z5||Z6|2 , ε57 = Z∗5Z

2
7 = ε57|Z5||Z6|2 . (1.44)

Note that since the scalar potential is assumed to be CP conserving (otherwise the custodial symmetry
is violated), it follows that Im(Z∗5Z2

6 ) = Im(Z∗5Z2
7 ) = 0. Hence ε56 and ε57 are real numbers of unit

modulus.
A numerical study shows that the 2HDM contribution to T is within the experimentally measured

bounds as long as there is not a significant mass splitting between the charged Higgs boson and the
heavy neutral Higgs bosons. Such mass splittings would require rather large values of some of the
scalar quartic couplings (which would be approaching their unitarity limits).
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1.3.3 Tree-level Higgs boson couplings–the general case

The interactions of the Higgs bosons with the gauge bosons and the Higgs self-interactions, when
computed in the Higgs basis, can be expressed in terms of the parameters Zi, θ12, θ13 and θ23 [58]. In
fact, the only combinations that appear will be invariant with respect to the rephasing H2 → eiχH2

(since observables cannot depend on the arbitrary angle χ). Indeed, the interaction terms will depend
on the invariant quantities qk1 and qk2 defined in Table 1.3 and on invariant combinations of the Zi
and e−iθ23 .

The interactions of the Higgs bosons and vector bosons of the Standard Model are given by:

LV V H =
(
gmWW

+
µ W

µ− + g

2cW
mZZµZ

µ

)
qk1hk , (1.45)

LV V HH =
[

1
4g

2W+
µ W

µ− + g2

8c2W
ZµZ

µ

]
hkhk

+
[

1
2g

2W+
µ W

µ− + e2AµA
µ + g2

c2W

( 1
2 − s

2
W

)2
ZµZ

µ + 2ge
cW

( 1
2 − s

2
W

)
AµZ

µ

]
H+H−

+
{(

1
2egA

µW+
µ −

g2s2
W

2cW
ZµW+

µ

)
qk2H

−hk + h.c.
}
, (1.46)

LV HH = g

4cW
εjk`q`1Z

µhj
↔
∂µ hk − 1

2g

[
iqk2W

+
µ H

−↔
∂ µ hk + h.c.

]
+
[
ieAµ + ig

cW

( 1
2 − s

2
W

)
Zµ
]
H+↔

∂µ H
− , (1.47)

where sW ≡ sin θW , cW ≡ cos θW , and the sum over pairs of repeated indices j, k = 1, 2, 3 is implied.
The trilinear Higgs self-interactions are given by

L3h = − v√
2
hjhkh`

[
qj1qk1q`1Z1 + qj2q

∗
k2q`1(Z3 + Z4) + qj1Re(qk2q`2Z5 e

−2iθ23)

+3qj1qk1Re
(
q`2Z6 e

−iθ23
)

+ Re(q∗j2qk2q`2Z7 e
−iθ23)

]
+
√

2 v hkH+H−
[
qk1Z3 + Re(qk2 e

−iθ23Z7)
]
, (1.48)

where there is an implicit sum over repeated indices. Note that the complex Z5,6,7 are always paired
with the correct power of e−iθ23 such that the corresponding product is invariant under the rephasing
of H2. Finally, for completeness, the quadralinear Higgs self-interactions are exhibited,

L4h = − 1
8hjhkhlhm

[
qj1qk1q`1qm1Z1 + qj2qk2q

∗
`2q
∗
m2Z2 + 2qj1qk1q`2q

∗
m2(Z3 + Z4)

+2qj1qk1Re(q`2qm2Z5 e
−2iθ23) + 4qj1qk1q`1Re(qm2Z6 e

−iθ23) + 4qj1Re(qk2q`2q
∗
m2Z7 e

−iθ23)
]

− 1
2hjhkH

+H−
[
qj2q

∗
k2Z2 + qj1qk1Z3 + 2qj1Re(qk2Z7 e

−iθ23)
]
− 1

2Z2H
+H−H+H−. (1.49)

It is remarkable how compact the expressions are for the Higgs boson interactions when written
explicitly in terms of invariant quantities that can be directly related to observables.

We next turn to the Higgs-fermion Yukawa couplings. For simplicity, we focus on the interaction
of the Higgs bosons with three generations of quarks. The corresponding interactions with leptons
are easily obtained from the latter by the appropriate substitutions. One starts out initially with a
Lagrangian expressed in terms of the scalar doublet fields Φi (i = 1, 2) and interaction–eigenstate
quark fields. After electroweak symmetry breaking, one can transform the scalar doublets into the
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1.3 The two-Higgs-doublet model (2HDM)

Higgs basis fields H1 and H2. At the same time, one can identify the 3× 3 quark mass matrices. By
redefining the left and right-handed quark fields appropriately, the quark mass matrices are transformed
into diagonal form, where the diagonal elements are real and non-negative. The resulting Higgs–quark
Yukawa couplings are given by [59]

− LY = UL(κUH0 †
1 + ρUH0 †

2 )UR −DLK
†(κUH−1 + ρUH−2 )UR

+ULK(κD †H+
1 + ρD †H+

2 )DR +DL(κD †H0
1 + ρD †H0

2 )DR + h.c., (1.50)

where U = (u, c, t) and D = (d, s, b) are the mass-eigenstate quark fields, K is the CKM mixing
matrix and κ and ρ are 3× 3 Yukawa coupling matrices. Note that QR,L ≡ PR,LQ, where Q = U

or D and PR,L ≡ 1
2 (1± γ5) are the right and left handed projection operators, respectively.

By setting H0
1 = v and H0

2 = 0, one can relate κU and κD to the diagonal quark mass matrices
MU and MD, respectively,

MU = vκU = diag(mu , mc , mt) , MD = vκD † = diag(md , ms , mb) . (1.51)

However, the complex matrices ρQ (Q = U,D) are unconstrained. Moreover,

ρQ → e−iχρQ , (1.52)

under the rephasing H2 → eiχH2.
The Yukawa coupling of the Higgs doublets to the leptons can be similarly treated by replacing

U → N , D → E, MU → 0, MD → ME and K → 1, where N = (νe, νµ, ντ ), E = (e, µ, τ) and
ME is the diagonal charged lepton mass matrix.

To obtain the physical Yukawa couplings of the Higgs boson, one must relate the Higgs basis scalar
fields to the Higgs mass-eigenstate fields. This yields the physical Higgs–quark Yukawa couplings,

− LY = 1√
2
D

3∑
k=1

{
qk1

MD

v
+ qk2 [eiθ23ρD]†PR + q∗k2 e

iθ23ρDPL

}
Dhk

+ 1√
2
U

3∑
k=1

{
qk1

MU

v
+ q∗k2 e

iθ23ρUPR + qk2 [eiθ23ρU ]†PL
}
Uhk

+
{
U
[
K[eiθ23ρD]†PR − [eiθ23ρU ]†KPL

]
DH+ + h.c.

}
. (1.53)

The combinations eiθ23ρU and eiθ23ρD that appear in the interactions above are invariant under the
rephasing of H2.

Note that no tan β parameter appears above! This is because tan β is the absolute value of the
ratio of the two neutral Higgs vevs defined with respect to some arbitrary basis of the scalar doublets.
But, since the two Higgs doublet fields are identical at this stage, there is no physical principle that
singles out a particular basis. Indeed, physical observables cannot depend on the choice of basis.
Hence, tan β is an unphysical parameter. In contrast, all parameters that appear in eq. (1.53) are
physical and can be directly related to some observable.

It is convenient to rewrite the Higgs-fermion Yukawa couplings in terms of the following two
3× 3 hermitian matrices that are invariant with respect to the rephasing of H2,

ρQR ≡
v

2 M
−1/2
Q

{
eiθ23ρQ + [eiθ23ρQ]†

}
M
−1/2
Q , for Q = U,D ,

ρQI ≡
v

2iM
−1/2
Q

{
eiθ23ρQ − [eiθ23ρQ]†

}
M
−1/2
Q , for Q = U,D . (1.54)
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Then, the Yukawa couplings take the following form:

− LY = 1
v
√

2
D

3∑
k=1

M
1/2
D

{
qk11+ Re(qk2)ρDR + Im(qk2)ρDI + iγ5(Im(qk2)ρDR − Re(qk2)ρDI

}
M

1/2
D Dhk

+ 1
v
√

2
U

3∑
k=1

M
1/2
U

{
qk11+ Re(qk2)ρUR + Im(qk2)ρUI + iγ5(Im(qk2)ρUR − Re(qk2)ρUI

}
M

1/2
U Uhk

+1
v

{
U
[
KM

1/2
D (ρDR − iρDI )M1/2

D PR −M1/2
U (ρUR − iρUI )M1/2

U KPL
]
DH+ + h.c.

}
, (1.55)

where 1 is the 3×3 identity matrix. The appearance of unconstrained complex 3×3 Yukawa matrices
ρQR,I in eq. (1.55) indicates the presence of potential flavor-changing neutral Higgs–quark interactions.
If the off-diagonal elements of ρQR,I are unsuppressed, they will generate tree-level Higgs-mediated
FCNCs that are incompatible with the strong suppression of FCNCs observed in nature.

1.3.4 Tree-level Higgs boson couplings—the CP-conserving case

It is instructive to consider the case of a CP-conserving Higgs scalar potential. If CP is explicitly
conserved, then there exists a basis for the scalar fields in which all the parameters of the scalar
potential are simultaneously real. Such a basis (if it exists) is called a real basis. If in addition the
vacuum conserves CP, then a real basis exists in which the vevs are simultaneously real. In this case,
a real Higgs basis exists that is unique up to a redefinition of H2 → −H2. Thus, without loss of
generality, we can adopt a convention in which the sign of Z6 or Z7 is fixed to be either positive or
negative.

Having chosen a real Higgs basis, one can diagonalize the neutral Higgs mass matrix given in
eq. (1.32). One immediately finds two neutral CP-even scalars, h and H (with mh < mH) with
squared-masses,

m2
H,h = 1

2

{
Y2 +

(
Z345 + 2Z1

)
v2 ±

√[
Y2 +

(
Z345 − 2Z1

)
v2
]2 + 16Z2

6v
4
}
, (1.56)

where Z345 ≡ Z3+Z4+Z5 (since Z5 is real by assumption), and a CP-odd scalar A, with squared-mass

m2
A = Y2 + (Z3 + Z4 − Z5)v2 . (1.57)

Only one neutral Higgs mixing angle θ12 is required, since θ13 = 0 and eiθ23 = sgn Z6. It is
conventional to rotate from the Higgs basis to an arbitrary basis by an angle β. In this basis, the
conventionally defined Higgs mixing angle α is related to θ12 by,

α = β − θ12 − 1
2π . (1.58)

The quantity β − α = θ12 + 1
2π is clearly independent of the choice of basis used to define β. In this

notation, we have

cos θ12 = sin(β − α) , sin θ12 = − cos(β − α) sgn Z6 , (1.59)

where 0 ≤ β − α < π [in light of eq. (1.34)]. Eqs. (1.36) and (1.37) yield

cos2(β − α) = 2Z1v
2 −m2

1
m2

2 −m2
1

, (1.60)

sin(β − α) cos(β − α) = − 2Z6v
2

m2
2 −m2

1
. (1.61)
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It is convenient to adopt a convention where Z6 > 0 in which case we can take θ23 = 0. In
this convention, eq. (1.61) implies that the sign of cos(β − α) is negative (since by assumption,
0 ≤ sin(β − α) ≤ 1 and m2 > m1). The corresponding invariant combinations of neutral Higgs
mixing angles given in Table 1.3 simplify as shown in Table 1.4 below.

Table 1.4. Invariant combinations of Higgs mixing angles in the CP-conserving case, where cβ−α ≡ cos(β − α) and
sβ−α ≡ sin(β − α), in a convention where Z6 > 0. These are obtained from Table 1.3 by setting θ12 = β − α− 1

2π
and θ13 = 0.

k qk1 qk2
1 sβ−α cβ−α
2 −cβ−α sβ−α
3 0 i

Using the results of Table 1.4 and identifying h1 = h, h2 = −H and h3 = A to match the standard
conventions of the CP-conserving 2HDM, we can obtain from eqs. (1.45)–(1.49) and eq. (1.55) the
complete list of Higgs couplings in the CP-conserving case. The properties of the three-point and
four-point Higgs boson-vector boson couplings are conveniently summarized by listing the couplings
that are proportional to either sβ−α or cβ−α, and the couplings that are independent of β − α [31]:

cos(β − α) sin(β − α) angle-independent

HW+W− hW+W− —
HZZ hZZ —
ZAh ZAH ZH+H− , γH+H−

W±H∓h W±H∓H W±H∓A

ZW±H∓h ZW±H∓H ZW±H∓A

γW±H∓h γW±H∓H γW±H∓A

— — V V φφ , V V AA , V V H+H−

(1.62)
where φ = h or H and V V = W+W−, ZZ, Zγ or γγ. Note in particular that all vertices in the
theory that contain at least one vector boson and exactly one non-minimal Higgs boson state (H, A
or H±) are proportional to cos(β − α). This can be understood as a consequence of unitarity sum
rules which must be satisfied by the tree-level amplitudes of the theory [27, 28, 65, 66].

1.3.5 The decoupling/alignment limit of the 2HDM

Many models of extended Higgs sectors possess a decoupling limit, in which there exists one scalar
whose properties coincide with those of the Standard Model Higgs boson [67]. The decoupling limit of
the 2HDM corresponds to the limiting case in which the Higgs doublet H2 (in the Higgs basis) receives
a very large mass and is therefore decoupled from the theory. This can be achieved by assuming that
Y2 � v2 and |Zi| . O(1) for all i [58, 68]. The effective low energy theory consists of a single Higgs
doublet field (namely, H1), corresponding to the Higgs sector of the Standard Model. The alignment
limit of the 2HDM corresponds to the limiting case in which the mixing of the two Higgs doublet fields
H1 and H2 (in the Higgs basis) is suppressed [69]. This can be achieved by assuming that |Y3| � 1
[which implies that |Z6| � 1 via the scalar potential minimum conditions given below eq. (1.30)]. In
both the decoupling and alignment limits, the neutral Higgs mass eigenstate is approximately given
by
√

2 Re(H0
1 − v), and its couplings approach those of the Standard Model (SM) Higgs boson. In

this section, we provide a general analysis of the decoupling/alignment limit of the 2HDM following
the work of Ref. [70].

It is convenient to order the neutral scalar masses such that m1 ≤ m2,3 and define the invariant
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Higgs mixing angles accordingly. If we identify h1 as the SM-like Higgs boson so that

gh1V V

ghSMV V
= c12c13 ' 1 , where V = W or Z , (1.63)

then it follows that s12, s13 � 1. Thus, in the decoupling/alignment limit, eqs. (1.37) and (1.38)
yield [58]:

s12 ≡ sin θ12 '
2 Re(Z6e

−iθ23)v2

m2
2 −m2

1
� 1 , (1.64)

s13 ≡ sin θ13 ' −
2 Im(Z6e

−iθ23)v2

m2
3 −m2

1
� 1 . (1.65)

In addition, eq. (1.40) implies that one additional small quantity characterizes the decoupling/alignment
limit,

Im(Z5e
−2iθ23) ' (m2

2 −m2
1)s12s13

v2 ' −2 Im(Z2
6e
−2iθ23)v2

m2
3 −m2

1
� 1 . (1.66)

Note that in the decoupling/alignment limit, eq. (1.39) yields

m2
2 −m2

3 ' 2 Re(Z5e
−2iθ23)v2 . (1.67)

In the decoupling limit, m2
1 ' 2Z1v

2 � m2
2, m2

3, m2
H± , which guarantees that eqs. (1.64)–(1.66)

are satisfied. In addition, m2
2 −m2

3 ' m2
H± −m

2
3 = O(v2). That is, the mass splittings among the

heavy Higgs states are of order v2/m3. In the alignment limit, |Z6| � 1 ensures that eqs. (1.64)–
(1.66) are satisfied. We again find that m2

1 ' Z1v
2, but with no requirement that h2, h3 and H±

must be significantly heavier than h1. The couplings of h1 to the vector bosons and fermions and the
Higgs self-couplings in the approach to the decoupling/alignment limit are exhibited in Table 1.5.

Table 1.5. 2HDM couplings of the SM-like Higgs boson h ≡ h1 normalized to those of the SM Higgs boson, in
the decoupling/alignment limit. In the Higgs couplings to vector bosons, V V = W+W− or ZZ. In the Higgs
self-couplings, Z6R ≡ Re(Z6e−iθ23) and Z6I ≡ Im(Z6e−iθ23). For the fermion couplings, D is a column vector
of three down-type fermion fields (either down-type quarks or charged leptons) and U is a column vector of three
up-type quark fields. The 3× 3 hermitian matrices, ρQR and ρQI (where Q = U or D) are defined in eq. (1.54). The
normalization of the pseudoscalar coupling of the Higgs boson h to fermions is relative to the corresponding scalar
coupling to fermions.

Higgs interaction 2HDM coupling decoupling/alignment limit
hV V c12c13 1− 1

2 s
2
12 −

1
2 s

2
13

hhh see eq. (1.48) 1− 3(s12Z6R − s13Z6I)/Z1

hhhh see eq. (1.49) 1− 4(s12Z6R − s13Z6I)/Z1

hDD c12c131− s12ρDR − c12s13ρDI 1− s12ρDR − s13ρDI

ihDγ5D s12ρDI − c12s13ρDR s12ρDI − s13ρDR

hUU c12c131− s12ρUR − c12s13ρUI 1− s12ρUR − s13ρUI

ihUγ5U −s12ρUI + c12s13ρUR −s12ρUI + s13ρUR

If the scalar potential is CP-conserving, then in the conventions established above, θ13 = θ23 = 0
and Z6 is real and positive. In this case eqs. (1.65) and (1.66) are automatically satisfied. The
decoupling/alignment limit is then achieved when eq. (1.64) is satisfied. Using eq. (1.61), the
decoupling/alignment limit corresponds to [68]:

cos(β − α) ' − 2Z6v
2

m2
H −m2

h

� 1 . (1.68)
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In this limit, the neutral Higgs masses are given by,

m2
h ' 2Z1v

2 , m2
H,A ' Y2 + (Z3 + Z4 ± Z5)v2 . (1.69)

In the 2HDM with a CP-conserving scalar potential, the couplings of h to the vector bosons
and fermions and the Higgs self-couplings in the approach to the decoupling/alignment limit are
exhibited in Table 1.6. Note that if the Yukawa coupling matrices ρU and/or ρD are complex, then
small CP-violating pseudoscalar couplings of the SM-like Higgs boson to fermion pairs will be present,
suppressed by a factor of cβ−α.

Table 1.6. 2HDM couplings of the SM-like Higgs boson h normalized to those of the SM Higgs boson, in the de-
coupling/alignment limit. The hH+H− coupling given below is normalized to the SM hhh coupling. The scalar
Higgs potential is taken to be CP-conserving. For the fermion couplings, D is a column vector of three down-type
fermion fields (either down-type quarks or charged leptons) and U is a column vector of three up-type quark fields.
The 3× 3 hermitian matrices, ρQR and ρQI (where Q = U or D) are defined in eq. (1.54). The normalization of the
pseudoscalar coupling of the Higgs boson h to fermions is relative to the corresponding scalar coupling to fermions.

Higgs interaction 2HDM coupling decoupling/alignment limit
hV V sβ−α 1− 1

2 c
2
β−α

hhh see eq. (1.48) 1 + 3(Z6/Z1)cβ−α

hH+H− see eq. (1.48) 1
3

[
(Z3/Z1) + (Z7/Z1)cβ−α

]
hhhh see eq. (1.49) 1 + 4(Z6/Z1)cβ−α

hDD sβ−α1 + cβ−αρ
D
R 1 + cβ−αρ

D
R

ihDγ5D cβ−αρ
D
I cβ−αρ

D
I

hUU sβ−α1 + cβ−αρ
U
R 1 + cβ−αρ

U
R

ihUγ5U cβ−αρ
U
I cβ−αρ

U
I

The 2HDM couplings of H and A in the decoupling/alignment limit are also noteworthy. The
couplings to vector boson pairs and fermion pairs are displayed in Table 1.7. The pattern of Higgs
couplings noted in eq. (1.62) indicate that all couplings that involve at least one vector boson and
exactly one of the non-minimal Higgs states (H, A or H±) is suppressed by a factor of cβ−α in the
decoupling/alignment limit.

Table 1.7. 2HDM couplings of H and A normalized to those of the SM Higgs boson, in the decoupling/alignment
limit. The Hhh coupling given below is normalized to the SM hhh coupling. The scalar Higgs potential is taken to
be CP-conserving. In the convention of Z6 > 0, we identify H ≡ −h2 and A ≡ h3. See caption to Table 1.6.

Higgs interaction 2HDM coupling decoupling/alignment limit
HW+W− ,HZZ cβ−α cβ−α

Hhh see eq. (1.48) −Z6/Z1 + [1− 2
3 (Z345/Z1)]cβ−α

HDD cβ−α1− sβ−αρDR cβ−α1− ρDR
iHDγ5D sβ−αρ

D
I ρDI

HUU cβ−α1− sβ−αρUR cβ−α1− ρUR
iHUγ5U −sβ−αρUI −ρUI

AW+W− ,AZZ 0 0

h3DD ρDI ρDI

iADγ5D ρDR ρDR

AUU ρUI ρUI

iAUγ5U −ρUR −ρUR

For completeness we note that it may be possible to identify the SM-like Higgs boson with
h2 = −H. In this case, we have cβ−α ' 1 and sβ−α � 1, in order to achieve a SM-like HV V
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coupling. In this case, eq. (1.61) yields

sβ−α ' −
2Z6v

2

m2
H −m2

h

� 1 . (1.70)

This cannot be satisfied in the decoupling limit, since by assumption we are identifying H with the
SM-like Higgs boson, with mH > mh. However, eq. (1.70) can be satisfied in the alignment limit
where Z6 � 1. The corresponding neutral Higgs masses are:

m2
H = 2Z1v

2 , m2
h,A = Y2 + (Z3 + Z4 ± Z5)v2 , (1.71)

which requires that 2Z1v
2 > Y2 +(Z3 +Z4 +Z5)v2 (since mh < mH). In order for this interpretation

to be viable, one must check that the other Higgs states would have not been discovered at LEP.
Although it is not yet possible to fully rule out this case, we shall not consider it further here.

1.3.6 Higgs production at the ILC

In the CP-conserving 2HDM, the neutral Higgs bosons are produced via Higgsstrahlung and fusion
processes as in the SM. In these production mechanisms, the CP-even Higgs bosons are produced
via the coupling to gauge bosons. Consequently, the production cross section of h and H via these
processes are simply given by

σ2HDM(h) = σSM(h) sin2(β − α), (1.72)
σ2HDM(H) = σSM(h) cos2(β − α). (1.73)

In the decoupling regime where sin2(β − α) ' 1 and cos2(β − α)� 1, the production cross section
of h is similar to that of the Higgs boson in the SM, while that of H is small. The production of the
CP-odd Higgs boson A via Higgsstrahlung or gauge boson fusion is highly suppressed since the A
does not couple to weak gauge boson pairs at tree-level.

Figure 1.7. Pair production diagrams for neutral and charged Higgs bosons.

In addition, H (or h) and A are pair produced via the couplings HAZ and hAZ, as shown in
Fig. 1.7 (Left). In light of eq. (1.62), the corresponding cross-sections are proportional to sin2(β −α)
and cos2(β−α), respectively. In the decoupling regime, where sin2(β−α) ' 1, the HA production is
maximal. In Fig. 1.8 (Left), the production cross section of e+e− → Z∗ → HA is shown as a function
of mA, assuming mA = mH for √s = 250 and 500 GeV. In these pair production mechanisms,
the mass reach is kinematically limited by √s/2. Beyond the threshold of pair production, single
production processes e+e− → ff̄H (ff̄A) could be used although the cross sections are rather small
due to the limited phase space.

Charged Higgs bosons are produced in pairs via e+e− → H+H− as long as it is kinematically
allowed as illustrated in Fig. 1.7 (Right). In Fig. 1.8 (Right), the production cross section of
e+e− → Z∗(γ) → H+H− is shown as a function of mH± for √s = 300, 500, 800 and 1000 GeV.
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Figure 1.8. Production cross sections of e+e− → H+H− and e+e− → AH

The associated production process, e+e− → H±W∓, is highly suppressed in the 2HDM due to the
absence of a H±W∓Z vertex at tree level. Therefore, this process is especially sensitive to charged
Higgs bosons in extended Higgs sectors with exotic scalar fields in a triplet or septet representation,
where a tree-level H±W∓Z vertex is present.

If mH± >
1
2
√
s, then pair production of charged Higgs bosons is not kinematically allowed. In

this case, single charged Higgs boson production processes such as e+e− → τνH±, e+e− → csH±

and e+e− → tbH± can be studied, although the cross sections for these processes are rather small,
typically 0.1 fb or less.

The production of multiple Higgs boson states can in principle probe many of the Higgs self-
coupling parameters and allow for a (partial) reconstruction of the Higgs potential. The mechanisms
for double Higgs and triple Higgs production in high energy e+e− collisions have been considered in
Refs. [71, 72, 73, 74, 75, 76].

1.3.7 Special forms for the Higgs-fermion Yukawa interactions

In the most general 2HDM, there is no reason why the matrices ρQR and ρQI , which appear in the
Higgs-fermion Yukawa interactions [cf. eq. (1.55)], should be approximately diagonal, as required by
the absence of large FCNCs (mediated by tree-level neutral Higgs exchange) in the data. Indeed in the
general case, the diagonal structure of ρQR and ρQI is not stable with respect to radiative corrections,
so that imposing such a condition requires an artificial fine-tuning of parameters. However, for special
forms for the Higgs-fermion Yukawa interactions, it turns out that the matrices ρQR and ρQI are
automatically diagonal, due to the presence of a symmetry that guarantees that the diagonal structure
is radiatively stable. In this case, tree-level Higgs mediated FCNCs are ”naturally” absent (in the same
way that tree-level FCNCs mediated by Z-exchange are absent due to the GIM mechanism [77]).

In a general extended Higgs model, tree-level Higgs mediated FCNCs are absent if for some
choice of basis of the scalar fields, at most one Higgs multiplet is responsible for providing mass
for quarks or leptons of a given electric charge [54, 55]. This Glashow-Weinberg-Pascos (GWP)
condition can be imposed by a symmetry principle, which guarantees that the absence of tree-level
Higgs mediated FCNCs is natural. By an appropriate choice of symmetry transformation laws for the
fermions and the Higgs scalars, the resulting Higgs-fermion Yukawa interactions take on the required
form in some basis. The symmetry also restricts the form of the Higgs scalar potential in the same
basis. These considerations were first applied in the 2HDM in Refs. [78] and [79].
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More generally, consider the Higgs–quark Yukawa interactions of the 2HDM in the Φ1–Φ2 basis,

− LY = ULΦ0 ∗
a hUa UR −DLK

†Φ−a hUa UR + ULKΦ+
a h

D †
a DR +DLΦ0

ah
D †
a DR

+NLΦ+
a h

L †
a ER + ELΦ0

ah
L †
a ER + h.c. , (1.74)

where we have made explicit both the couplings to the quarks and leptons. In eq. (1.74), hU,D,L are
3× 3 Yukawa coupling matrices and there is an implicit sum over a = 1, 2. The GWP condition can
be implemented in four different ways [80, 81, 82]:

1. Type-I Yukawa couplings: hU1 = hD1 = hL1 = 0,

2. Type-II Yukawa couplings: hU1 = hD2 = hL2 = 0.

3. Type-X Yukawa couplings: hU1 = hD1 = hL2 = 0,

4. Type-Y Yukawa couplings: hU1 = hD2 = hL1 = 0.
The four types of Yukawa couplings can be implemented by a discrete symmetry as shown in Table 1.8.

Table 1.8. Four possible Z2 charge assignments that forbid tree-level Higgs-mediated FCNC effects in the
2HDM. [82].

Φ1 Φ2 UR DR ER UL, DL, NL, EL
Type I + − − − − +
Type II (MSSM like) + − − + + +
Type X (lepton specific) + − − − + +
Type Y (flipped) + − − + − +

The imposition of the discrete symmetry also restricts the form of the Higgs scalar potential
given in eq. (1.27) by setting m2

12 = λ6 = λ7 = 0. In this case, one can always rephase Φ1 such that
λ5 is real, in which case the scalar potential is CP-conserving. Moreover, assuming that a U(1)EM-
conserving potential minimum exists, the corresponding vacuum is CP-conserving, corresponding to
real vacuum expectation values, vi ≡ 〈Φ0

i 〉. Thus, the parameter

tan β ≡ v2

v1
, (1.75)

is now meaningful since it refers to vacuum expectation values with respect to the basis of scalar
fields where the discrete symmetry has been imposed. By convention, we shall take 0 ≤ β ≤ 1

2π, in
which case tan β is non-negative. This can be achieved by redefining Φ2 → −Φ2 if tan β is negative.
However, such a redefinition would also reverse the signs of Z6 and Z7. Thus, by adopting the
convention that tan β is non-negative, we can no longer a choose the convention where, say, Z6 > 0.
Indeed, in a convention where tan β and sin(β − α) are non-negative, both Z6 and cos(β − α) can
be of either sign [subject to the constraint that Z6 cos(β − α) < 0 due to eq. (1.61)].

It is straightforward to evaluate the ρQR,I for the Type-I and Type-II Higgs-quark Yukawa couplings.
Using the corresponding results for the ρQR,I , the couplings of h, H and A are easily obtained from
Tables 1.6 and 1.7.

1. Type-I: ρDR = ρUR = 1 cotβ , ρDI = ρUI = 0.

hDD , hUU : cosα
sin β = sβ−α + cβ−α cotβ ,

HDD , HUU : sinα
sin β = cβ−α − sβ−α cotβ ,

iADγ5D : cotβ ,

iAUγ5U : − cotβ . (1.76)
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2. Type-II: ρDR = −1 tan β , ρUR = 1 cotβ , ρDI = ρUI = 0.

hDD : − sinα
cosβ = sβ−α − cβ−α tan β ,

hUU : cosα
sin β = sβ−α + cβ−α cotβ ,

HDD : cosα
cosβ = cβ−α + sβ−α tan β ,

HUU : sinα
sin β = cβ−α − sβ−α cotβ ,

iADγ5D : − tan β ,

iAUγ5U : − cotβ . (1.77)

Likewise, the charged Higgs Yukawa couplings to quarks are given by

− LY 3
√

2
v

cotβ
(
U
[
KMDPR −MUKPL

]
DH+ + h.c.

)
, Type-I , (1.78)

−LY 3 −
√

2
v

(
U
[
KMDPR tan β −MUKPL cotβ

]
DH+ + h.c.

)
, Type-II , (1.79)

where MU,D are the diagonal up-type and down-type 3× 3 quark mass matrices and K is the CKM
mixing matrix. The Type-I [Type-II] neutral and charged Higgs Yukawa coupling to quarks also apply
to Type-X [Type-Y], respectively.

Following the prescription below eq. (1.52), the charged Higgs Yukawa coupling to leptons
are obtained from the couplings to quarks given above by replacing U → N , D → E, MU → 0,
MD →ME and K → 1. The Type-I [Type-II] neutral and charged Higgs Yukawa coupling to leptons
also apply to Type-Y [Type-X], respectively. The neutral Higgs Yukawa couplings to quarks and
leptons (relative to the corresponding couplings of the SM Higgs boson) are conveniently summarized
in Table 1.9 for the four possible implementations of the GWP condition.

Table 1.9. Higgs–fermion couplings in the 2HDM subject to the Z2 symmetries given in Table 1.8. The couplings
listed below are normalized relative to the SM Higgs couplings hSMUU , hSMDD, and hSMEE.

hUU hDD hEE HUU HDD HEE iAUγ5U iADγ5D iAEγ5E

ξuh ξdh ξeh ξuH ξdH ξeH ξuA ξdA ξeA

Type I cosα
sin β

cosα
sin β

cosα
sin β

sinα
sin β

sinα
sin β

sinα
sin β − cotβ cotβ cotβ

Type II cosα
sin β − sinα

cos β − sinα
cos β

sinα
sin β

cosα
cos β

cosα
cos β − cotβ − tanβ − tanβ

Type X cosα
sin β

cosα
sin β − sinα

cos β
sinα
sin β

sinα
sin β

cosα
cos β − cotβ cotβ − tanβ

Type Y cosα
sin β − sinα

cos β
cosα
sin β

sinα
sin β

cosα
cos β

sinα
sin β − cotβ − tanβ cotβ

In implementing the Z2 discrete symmetries given in Table 1.8, we noted above that the
parameters of the scalar Higgs potential are restricted such that m2

12 = λ6 = λ7 = 0 in the basis
in which the discrete symmetry is manifest. However, these latter conditions can be slightly relaxed
by taking m2

12 6= 0 (while maintaining λ6 = λ7 = 0). In this case, it is convenient to introduce a
squared-mass parameter,

M2 ≡ 2m2
12

sin 2β = m2
A + λ5v

2 . (1.80)

When M2 6= 0, the discrete symmetry is softly broken by a dimension-two term in the scalar potential
(while it is respected by all dimension-four terms of the Lagrangian). In a 2HDM of this type,
Higgs–mediated FCNCs are still absent at tree-level, but can be generated at the one-loop level.
Since the neutral Higgs Yukawa couplings are suppressed by fermion masses, one can check that
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sensible parameter regimes exist in which the radiatively generated FCNCs in this model are sufficiently
suppressed so as not to be in conflict with experimental data.

The existence of a softly-broken Z2 symmetry that imposes λ6 = λ7 = 0 in some basis yields
the following constraint on the Higgs basis scalar potential parameters:

(Z6 + Z7)(Z2 − Z1)(Z1 + Z2 − 2Z345) + (Z6 − Z7)
[
(Z2 − Z1)2 − 4(Z6 + Z7)2] = 0 , (1.81)

where Z345 ≡ Z3 + Z4 + Z5. The parameter β is also determined

tan 2β = 2(Z6 + Z7)
Z2 − Z1

. (1.82)

The case of Z1 = Z2 and Z6 = −Z7 must be treated separately. In this case, a Z2 symmetry
governing the quartic terms of the scalar potential is automatically present, and the corresponding
value of β is determined from the following quadratic equation,

(Z1 − Z345) tan 2β + 2Z6(1− tan2 2β) = 0 . (1.83)

In the constrained 2HDMs considered in this subsection, there are a number of benefits in
allowing for a soft breaking of the Z2 discrete symmetry, which permits a nonzero m2

12 in the
basis where λ6 = λ7 = 0. First, this allows us to treat the MSSM Higgs sector, which employs
the Type-II Higgs–fermion Yukawa couplings as a consequence of supersymmetry rather than a Z2

discrete symmetry. Second, the 2HDM with a soft breaking of the Z2 discrete symmetry possesses a
decoupling limit (which corresponds to large m2

12). If m2
12 = 0, no decoupling limit exists since the

scalar potential minimum conditions imply that Y2 ∼ O(Ziv2). Thus, in this latter case, a SM-like
Higgs boson emerges only in the alignment limit. Finally, taking m2

12 6= 0 allows for a new source
of CP-violation in the Higgs sector. One can check [68] that the Higgs scalar potential is explicitly
CP-violating if Im[(m2

12)2λ∗5] 6= 0. If the scalar potential is explicitly CP-conserving, then one can
rephase the scalar fields such that m2

12 and λ5 are real. In this case spontaneous CP-violation can
occur if 0 < |m2

12| < 2λ5|v1||v2|, in which case the minimum of the scalar potential yields a relative
phase 〈Φ†1Φ2〉 = |v1||v2|eiξ, where cos ξ = m2

12/(2λ5|v1||v2|).
The decays of the Higgs bosons in the constrained 2HDM depend on the Type of Yukawa

interactions. When sin(β−α) = 1, the decay pattern of h is the same as those in the Standard Model
at tree level. When sin(β − α) differs from from 1, the couplings of h will deviate from Standard
Model expectations. In particular, the couplings of h to down-type quarks and leptons will differ
from those of the SM with a pattern of deviations that strongly depends on the Type of Yukawa
Interactions. The precision measurement of these coupling make it possible to discriminate among
the various Types of Yukawa interactions of the 2HDM.

On the other hand, the decay patterns of H, A, and H± can vary over a large range [81, 82, 83, 84].
Figure 1.9 shows the decay branching ratios of H, A and H± as a function of tan β for Higgs
boson masses of 200 GeV and sin(β − α) = 1 for mH = mA = mH± = M = 200 GeV [where
M is defined in eq. (1.80)], assuming Type I, II, X and Y Yukawa couplings. For example, the
amplitudes for the fermionic and the gg decays mode of H, A and H± in the Type-I 2HDM are
all proportional to cotβ. Consequently the corresponding branching ratios are roughly independent
of tan β. Note that for sin(β − α) = 1, the couplings of H and A to fermion pairs are equal in
magnitude [cf. eq. (1.76)]. The differences among the A and H branching ratios can be attributed
to Γ(A→ gg, γγ) > Γ(H → gg, γγ), which arises due to different loop factors for the CP-odd and
CP-even scalar couplings to gg and γγ via the dominant top-quark loop. In principle, the partial
widths Γ(H,A→ γγ) can also differ due to the contributions of the W and charged Higgs loops to
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the amplitude for H → γγ (the corresponding couplings to A are absent due to the assumed CP
conservation). However, in the limit of λ6 = λ7 = cos(β − α) = 0, the W+W−H coupling vanishes
and the H+H−H coupling takes a particularly simple form, gH+H−H = 2(m2

H −M2) cot 2β/v [68],
which vanishes for the parameter choices employed in Figures 1.9 and 1.10.
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Figure 1.9. Decay branching ratios of H, A and H± in the four different Types of 2HDM as a function of tanβ for
mH = mA = m

H±
= M = 200 GeV. The SM-like limit sin(β − α) = 1 is taken.
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Figure 1.10. Decay branching ratios of H, A and H± in the four different Types of 2HDM as a function of tanβ
for mH = mA = m

H±
= M = 400 GeV. The SM-like limit sin(β − α) = 1 is taken.
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In Figure 1.10, figures of the decay branching ratios of H, A and H± similar to those in Fig. 1.9
are shown for sin(β − α) = 1 for mH = mA = mH± = M = 400 GeV. The two-body decays
H/A→ tt̄ are now kinematically allowed in this case. In general, the complexity of the H, A, H±

decay schemes in the various Types of Yukawa interactions make it difficult to determine the underlying
model unless these scalars are created through a simple and well-characterized pair-production reaction.
Thus, even if these scalars are discovered at the LHC, it will be important to study them via the
pair-production process at the ILC.

1.3.8 Constraints due to flavor physics

Indirect contributions of Higgs bosons to precisely measurable observables can be used to constrain
extended Higgs sectors. In this section, we summarize the experimental bounds from flavor experiments
on the constrained 2HDMs introduced in Section 1.3.7. These bounds arise primarily due to tree-level
or loop diagrams that contain the charged Higgs boson. The corresponding amplitudes involve the
Yukawa interactions and hence strongly depend on which Type of 2HDM is employed.

It is well known that the charged Higgs boson mass in the Type-II 2HDM is stringently constrained
by the precision measurements of the radiative decay of b→ sγ [85]. The process b→ sγ receives
contributions from the W boson loop and the charged Higgs boson loop in the 2HDM. It is noteworthy
that these two contributions always constructively interfere in the Type-II (Type-Y) 2HDM, whereas
this is not the case in the Type-I (Type-X) 2HDM [81, 82, 83, 84]. In Fig. 1.11 [82], we show
the branching ratio of B → Xsγ for each Type of 2HDM as a function of mH± (left-panel) and
tan β (right-panel), which are evaluated at the next-to-leading order (NLO) following the formulas in
Ref. [86]. The SM prediction at the NLO is also shown for comparison. The theoretical uncertainty is
about 15% in the branching ratio (as indicated by dotted curves in Fig. 1.11), which mainly comes
from the pole mass of charm quark mpole

c = 1.67± 0.07 GeV [87]. (Note that Ref. [86] quotes and
error in mpole

c of about 7%, which then leads to a smaller theoretical uncertainty in the branching
ratio for b → sγ.) The experimental bounds of the branching ratio are also indicated, where the
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Figure 1.11. Predictions of the decay branching ratio for b→ sγ are shown at the NLO approximation as a function
of m

H±
and tanβ. The dark (light) shaded band represents 1σ (2σ) allowed region of current experimental data.

In the left panel, solid (dashed) curves denote the prediction for tanβ = 2 (50) in various 2HDMs. In the right
panel, solid, dashed and dot-dashed curves are those for m

H±
= 100, 300 and 600 GeV, respectively.
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current world average value is given by BR(B → Xsγ) = (3.52 ± 0.23 ± 0.09) × 10−4 [88]. One
can see from Fig. 1.11 that the branching ratio in the Type-I (Type-X) 2HDM lies within the 2
σ experimental error in all the regions of mH± indicated for tan β & 2, while that in the Type-II
(Type-Y) 2HDM is far from the value indicated by the data for a light charged Higgs boson region
(mH± . 200 GeV). In the right figure, a cancellation occurs in the Type-I (Type-X) 2HDM since
there are destructive interferences between the W boson and the H± contributions. The results
of these figures indicate that the B → Xsγ experimental results still permit a light charged Higgs
boson in the Type-I (Type-X) 2HDM. We note that in the MSSM the chargino contribution can
compensate the charged Higgs boson contribution [89, 90]. This cancellation weakens the limit on
mH± from b→ sγ in the Type-II 2HDM, and allows a light charged Higgs boson as in the Type-I
(Type-X) 2HDM. At the NNLO approximation, the branching ratio for b→ sγ has been evaluated
in the SM in Refs. [91, 92, 93]. The predicted value at the NNLO approximation is less than that
at the NLO approximation over a wide range of renormalization scales. The branching ratio for
b → sγ in the Standard Model is (3.15 ± 0.23) × 10−4 [91], and a lower bound for mH± , after
adding the NLO charged Higgs contribution, is found to be mH± & 380 GeV (95% CL) in the Type-II
(Type-Y) 2HDM [85]. (Note that the calculation of Refs. [92, 93] for the NNLO branching ratio in
the SM yields (2.98± 0.26)× 10−4, and the corresponding charged Higgs mass bound is somewhat
relaxed.) On the other hand, in the Type-I (Type-X) 2HDM, although the branching ratio becomes
smaller as compared to the NLO evaluation, no serious bound on mH± can be found for tan β & 2.
Therefore, the charged Higgs boson mass is not expected to be strongly constrained in the Type-I
(Type-X) 2HDM even at the NNLO, and the conclusion that the Type-I (Type-X) 2HDM is favored
for mH± . 200 GeV based on the NLO analysis should not be changed.

The decay B → τν has been examined in the Type-II 2HDM in Refs. [94, 95]. The data for
BR(B+ → τ+ντ ) = (1.65± 0.34)× 10−4 are obtained at the B factories [87]. The decay branching
ratio can be written as [95]

B(B+ → τ+ντ )2HDM
B(B+ → τ+ντ )SM

'
(

1− m2
B

m2
H±

ξdAξ
e
A

)2

, (1.84)

where coefficients ξdA and ξeA are defined in Table 1.9. In Fig. 1.12, the allowed region from the
experimental B → τν results is shown in the Type-II 2HDM. The dark (light) shaded region denotes
the 2σ (1σ) exclusion from the B → τν measurements. The process is important only in the Type-II
2HDM at large values of tan β. The other Types of Yukawa interactions are not constrained by this
process.

The rate for the leptonic decay of the tau lepton, τ → µνν, can deviate from the SM value due
to the presence of a light charged Higgs boson [96]. The partial decay rate is approximately expressed
as [95]

Γ2HDM
τ→µνν

ΓSM
τ→µνν

' 1−
2m2

µ

m2
H±

ξeA
2κ

(
m2
µ

m2
τ

)
+
m2
µm

2
τ

4m4
H±

ξeA
4, (1.85)

where the function κ(x) is defined by

κ(x) = 1 + 9x− 9x2 − x3 + 6x(1 + x) ln x
1− 8x+ 8x3 − x4 − 12x2 ln x . (1.86)

In the Type-II (Type-X) 2HDM, the leptonic Yukawa interaction can be enhanced in the large tan β
region. Hence, both model Types are weakly constrained by tau decay data, as indicated in Fig. 1.12.

The precision measurement of the muon anomalous magnetic moment can yield a mass bound
on the Higgs boson in the SM [97, 98]. This constraint can be applied to models with additional
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Figure 1.12. Bounds from B → τν (left panel) and tau leptonic decay (right panel) on m
H±

as a function of tanβ
are shown. The dark (light) shaded region corresponds to the 2σ (1σ) exclusion of these experimental results. In the
Type-II 2HDM the wide parameter space is constrained by B → τν, while only the tau leptonic decays are important
for the Type-X 2HDM.

interactions such as the 2HDM [78, 99, 100]. At the one-loop level, the 2HDM contribution is given
by

δa1−loop
µ '

GFm
4
µ

4π2
√

2

 ∑
φ0=h,H

ξeφ0
2

m2
φ0

(
ln
m2
φ0

m2
µ

− 7
6

)
+ ξeA

2

m2
A

(
− ln m

2
A

m2
µ

+ 11
6

)
− ξeA

2

6m2
H±

 . (1.87)

This process is also purely leptonic and only yields milder bounds on the Higgs boson masses for
very large tan β values in the Type-II (Type-X) 2HDM. No effective bound on the Type-I (Type-Y)
2HDM is obtained. It is also known that the two-loop (Barr-Zee type) diagram can significantly
affect aµ [101]. The contribution from this class of diagrams is only important for large tan β values
with smaller Higgs boson masses in the Type-II 2HDM. For the other Types of 2HDM, a much less
effective bound on the parameter space is obtained.

The B0 − B̄0 mass differences, ∆MBd and ∆MBs , are sensitive to charged Higgs exchange
via box-type diagrams in which top quarks are also exchanged. The data exclude relatively large
top Yukawa couplings that are proportional mt cotβ for smaller charged Higgs boson masses. This
constraint is common among the four Types of 2HDMs. In light of the current data for ∆MBd ,
tan β < 1 is ruled out for mH± < 500 GeV at 95 % C.L. [102]

All the important constraints on the parameter space for each Type of 2HDM are summarized
in Fig. 1.13, where excluded regions from the data of BR(B → Xsγ), ∆0−, ∆MBd , Bu → τντ ,
B → Dτντ , K → µνµ, Ds → τντ , and Ds → µνµ are plotted in the (mH+ , tan β) plane [102].
Here, we have included among the list of flavor observables the degree of isospin asymmetry in the
exclusive decay mode B → K∗γ, defined as [103, 104]

∆0− ≡
Γ(B0 → K∗0)− Γ(B− → K∗−)
Γ(B0 → K∗0)− Γ(B− → K∗−)

. (1.88)
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Figure 1.13. Excluded regions of the (mH+ , tanβ) parameter space for Z2-symmetric 2HDM Types. The Type
Y and X models [cf. Table 1.8] are denoted above by Type III and IV, respectively. The color coding is as follows:
BR(B → Xsγ) (red), ∆0− (black contour), ∆MBd (cyan), Bu → τντ (blue), B → Dτντ (yellow), K → µνµ
(gray contour), Ds → τντ (light green), and Ds → µνµ (dark green).

The exclusion of low tan β < 1 in all four model Types for mH+ < 500 GeV, arises as a result of three
observables: BR(B → Xsγ), ∆0−, and ∆MBd . The constraints at low tan β are similar between
the model Types, since the couplings to the up-type quarks are universal. In the Type I 2HDM, a
value of tan β > 1 signals the decoupling of one Higgs doublet from the whole fermion sector. In
Type II and Type III (=Type Y), which share the same coupling pattern for the quarks, there exists a
tan β-independent lower limit of mH+ & 300 GeV imposed by BR(B → Xsγ). (This latter constraint
is now somewhat more stringent in light of Ref. [85].) No generic lower limit on mH+ is found in
Type I and Type IV (=Type X) models. Constraints for high tan β are only obtained in the Type II
model. This can be understood by noting that the leptonic and semi-leptonic observables require
tan β-enhanced couplings λddλ`` ∼ tan2 β � 1 (d = d, s, b) for the contributions to be interesting.
In the Type III (=Type Y) and and the Type IV (=Type X) 2HDMs, these couplings are instead
always λddλ`` = −1, while in Type I they are proportional to cot2 β.

Finally, recently current data from BaBar of the B̄ → Dτν̄ and B̄ → D∗τ ν̄ slightly deviate from
the SM predictions by 2.0 σ and 2.7 σ, respectively [105]. Moreover, these data are also inconsistent
with the Type-I (X) and Type-II (Y) 2HDMs, since both decay rates, which depend on the charged
Higgs mass, cannot be explained simultaneously for the same value of mH± . However, these data
can be compatible in the context of a more general 2HDM with unconstrained Higgs-quark Yukawa
interactions [106]. Meanwhile, there is no confirmation yet of the BaBar results for B̄ → Dτν̄ and
B̄ → D∗τ ν̄ from the BELLE collaboration. Thus, it is certainly premature to claim a definitive
deviation from the predictions of the Standard Model as well as all 2HDMs with Types I, II, X, or Y
Yukawa interactions.
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1.3.9 The inert 2HDM

The inert 2HDM is one of the simplest extensions of the Standard Model [107, 108]. The inert 2HDM
is defined as a Type-I model in which the Z2 discrete symmetry is imposed in the Higgs basis. The
Z2 charge assignments for the inert 2HDM are given in Table 1.10. In particular, the Higgs basis field
H2, which has no vev, is odd under the discrete symmetry. As a result of this discrete symmetry,
Y3 = Z6 = Z7 = 0 and there are no Yukawa couplings of H2 to fermions.

Table 1.10. The Z2 charge assignments that define the Inert 2HDM, where H1 and H2 are the Higgs doublet fields
in the Higgs basis.

H1 H2 UR DR ER UL, DL, NL, EL
Type I Inert + − − − − +

Since Z6 = 0, we are in the exact alignment limit, in which h =
√

2 Re(H0
1 − v) is a mass-

eigenstate whose couplings are equivalent to those of the SM Higgs bosons. We also identify

Φ2 =
(

H+

(H + iA)/
√

2

)
, (1.89)

where H, A and H+ are the other Higgs mass eigenstates. The Z2 discrete symmetry is unbroken in
the vacuum since 〈H0

2 〉 = 0. Thus, there are no couplings involving an odd number of H, A and
H± fields. In particular, the lightest inert particle (LIP) will be absolutely stable and is a potential
dark matter candidate [107, 109, 110, 111]. In addition, the inert 2HDM has rich phenomenological
features. For example, the dark matter could play a critical role in the breaking of the electroweak
symmetry [112] and the triggering of the electroweak phase transition [113]. One can also add a
Z2-odd right-handed neutrino to the model thereby providing a mechanism for generating the light
neutrino masses at the one loop level [114].

The scalar potential for the inert 2HDM is given (in the Higgs basis) by eq. (1.28) with
Y3 = Z6 = Z7 = 0. One can always rephase H2 → eiχH2 such that the one potentially complex
parameter, Z5 is real. Indeed, the sign of Z5 is not physical, since the sign can be flipped by redefining
H2 → iH2. Thus the Higgs sector of the inert 2HDM is CP-conserving and depends on seven real
parameters {Y1, Y2, Z1, Z2, Z3, Z4, |Z5|}. The potential minimum condition is given by Y1 = −Z1v

2.
Using eqs. (1.31) and (1.32), it follows that the physical Higgs masses are given by

m2
h = 2Z1v

2 , (1.90)
m2
H,A = Y2 + (Z3 + Z4 ± |Z5|)v2 , (1.91)

m2
H± = Y2 + Z3v

2 , (1.92)

Here, we have adopted a notation in which h corresponds to the scalar whose properties are precisely
those of the SM Higgs boson. No mass ordering of h and H is assumed. Indeed, eqs. (1.60) and
(1.61) imply that either cos(β − α) = 0 if h is identified as h1 or sin(β − α) = 0 if h is identified
as h2. In either case, this is the exact alignment limit with h identified as the SM Higgs boson.

Moreover, we have used the notation H and A above for the CP-even and odd bosons from the
inert sector. However, an examination of the couplings of H and A implies only that H and A have
CP-quantum numbers of opposite sign. However, one cannot assign a unique CP-quantum number
to H and A separately. (For further details, see Ref. [59].) The couplings of the inert scalars to the
gauge bosons and Higgs bosons are easily obtained by setting cos(β − α) = 0 [sin(β − α) = 0] if one
identifies the SM Higgs boson with h1 [h2].

If we require that all scalar squared masses are positive, with v2 = −Y1/Z1, then it follows
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that [108]
Y1 < 0 , Z1Y2 > Z3Y1 , Z1Y2 > (Z3 + Z4 ± |Z5|)Y1 . (1.93)

If we also require that the scalar potential is bounded from below (vacuum stability), then the following
additional constraints must be satisfied [108]

Z1 > 0 , Z2 > 0 , Z3 > −(Z1Z2)1/2 , Z3 + Z4 ± |Z5| > −(Z1Z2)1/2 . (1.94)

If one associates the dark matter with an electrically neutral LIP then mH± > mH,A, which yields [115]

Z4 < |Z5| . (1.95)

Finally, one can impose the conditions of perturbativity [107] which can be used to to restrict the
magnitudes of the Zi.

The seven parameters of the Higgs potential can be replaced by the vev v, four masses of the
Higgs boson and the inert scalars, (mh,mH± ,mH ,mA), the two of the scalar self-couplings Z2 and
Z3. For example, we can use this set of input parameters to compute Y1 = − 1

2m
2
h, Y2 = m2

H±−Z3v
2,

Z1v
2 = 1

2m
2
h, Z4v

2 = 1
2 (m2

H +m2
A)−m2

H± and |Z5|v2 = 1
2 |m

2
H −m2

A|.
Collider phenomenology of the inert scalars in the inert 2HDM has been studied in Refs. [107,

111, 116, 117]. In Ref. [117], experimental bounds on the inert scalar masses are obtained by using
the experimental results at the LEP collider [118, 119, 120]. At the LHC, even though the parameter
regions where the inert scalars could be discovered have been suggested [110, 121, 122], a detailed
search for the inert scalars and a determination of their masses and quantum numbers would be
difficult.

The ILC phenomenology for the inert scalars has been considered in Ref. [123]. Without loss of
generality, we assume in what follows that mH < mA. Four benchmark points for the mass spectrum
of inert scalars are listed in Table 1.11, which satisfy all available theoretical and phenomenological
constraints. In the four benchmark points, the mass of H is fixed to 65 GeV, so that it does not
permit the invisible decay of the SM Higgs boson, h→ HH. While a mass of H up to ∼ 80 GeV is
consistent with the dark matter relic abundance analysis [109, 110, 111], the collider phenomenology
does not change qualitatively by varying mH in this range.

In Table 1.11, the cross sections of HA production and H+H− production at √s = 250 GeV
and 500 GeV are shown. The production cross sections of the inert scalars are large enough to be
tested at the ILC. The cross section of HA production can take the largest value, i.e. 186 fb at
√
s = 190 GeV, 78 fb at √s = 280 GeV, and 46 fb at √s = 350 GeV for cases (I, III), (II), and

(IV), respectively. The cross section of H+H− production can take the largest value, i.e. 96 fb at
√
s = 380 GeV and 53 fb at √s = 500 GeV for cases (I, II) and (III, IV), respectively. At √s = 1 TeV,

they are about 10 fb and 20 fb for HA production and H+H− production for all the four benchmark
points, respectively. For cases (II, IV), H± decays into W±H predominantly, where we admit the
W -boson to be off-shell if mH± −mH < mW . For cases (I) and (III), H± → W±A decay would
be sizable as well, with the branching ratios about 32% and 27%, respectively. The decay of the
A-boson is dominated by A→ Z(∗)H.

Table 1.11. Masses of inert scalars and ILC cross sections for our four benchmark points.

Inert scalar masses ILC cross sections [√s = 250 GeV (500 GeV)]
mH [GeV] mA [GeV] mH± [GeV] σe+e−→HA [fb] σe+e−→H+H− [fb]

(I) 65. 73. 120. 152. (47.) 11. (79.)
(II) 65. 120. 120. 74. (41.) 11. (79.)
(III) 65. 73. 160. 152. (47.) 0. (53.)
(IV) 65. 160. 160. 17. (35.) 0. (53.)
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Figure 1.14. Determinations of mH± and mH by the four observables are illustrated in the left [right] panel for the
cases (I, II) [(III, IV)] at √s = 250 GeV [500 GeV]. Each observable is assumed to be measured in ±2 GeV accuracy.

In the left panel of Fig. 1.14, the expected accuracy of mass determination by the measurements
of the four observables for cases (I) and (II) at √s = 250 GeV is shown [123]. The four bands are
plotted in the (mH , mH±) plane by assuming that these four quantities are measured in ±2 GeV
accuracy (without any systematic shifts). The accuracy of the mH± (mH) determination would be
±2 GeV (±1 GeV). In the right panel of Fig. 1.14, the four bands are plotted in the (mH , mH±)
plane by assuming that the four observables are measured within the ±2 GeV accuracy. By combining
the four measurements with the uncertainty of ±2 GeV, mH± and mH can be determined in ±1 GeV
accuracy. The determination of mA can also be achieved by combining the observables in the process
e+e− → HA. However, at √s = 250 GeV and √s = 500 GeV, since the two constraints are very
similar, these masses cannot be determined at one point. In this case, one requires a fixed value of
mH in the process e+e− → H+H− as an input to determine mA. Then, the expected accuracy of
the mass determination is ±3 GeV for the measurement of the observables in ±2 GeV accuracy.

The scenarios discussed above provide examples of parameter regions of the inert 2HDM that
cannot be detected at the LHC but can be probed in detail at the ILC.

1.3.10 The MSSM Higgs sector

In the minimal supersymmetric extension of the Standard Model (MSSM) [see Ref. [124] for a review
and references], all Standard Model particles are accompanied by an associated supersymmetric partner
whose spin differs by half a unit. However, adding a doublet hypercharge-one higgsino superpartner
would yield a gauge anomaly, rendering the theory mathematically inconsistent. In the MSSM, this
problem is overcome by considering the supersymmetric extension of a two-Higgs doublet model,
where the two Higgs doublets possess hypercharges ±1, respectively. As a result, the corresponding
two higgsino superpartners of opposite hypercharge form a vector representation of spin-1/2 fermions,
and the gauge anomalies resulting from the higgsinos cancel exactly.

The Higgs sector of the MSSM is a 2HDM, whose Yukawa couplings and scalar potential are
constrained by supersymmetry (SUSY). Instead of employing to hypercharge-one scalar doublets Φ1,2,
it is more convenient to introduce a Y = −1 doublet Hd ≡ iσ2Φ∗1 and a Y = +1 doublet Hu ≡ Φ2:

Hd =
(
H1
d

H2
d

)
=
(

Φ0 ∗
1

−Φ−1

)
, Hu =

(
H1
u

H2
u

)
=
(

Φ+
2

Φ0
2

)
. (1.96)

The notation Hu,d is motivated by the form of Higgs Yukawa Lagrangian,

LYukawa = −hiju (ūiRu
j
LH

2
u − ūiRd

j
LH

1
u)− hijd (d̄iRd

j
LH

1
d − d̄iRu

j
LH

2
d) + h.c. , (1.97)
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which arises as a consequence of supersymmetry. That is, the neutral Higgs field H2
u couples exclusively

to up-type quarks and the neutral Higgs field H1
d couples exclusively to down-type quarks.

In particular, the so-called wrong Higgs interactions [125],

Lwrong Higgs = −h′ iju (ūiRu
j
LH

1 ∗
d + ūiRd

j
LH

2 ∗
d )− h′,ijd (d̄iRd

j
LH

2 ∗
u + d̄iRu

j
LH

1 ∗
u ) + h.c. , (1.98)

are not supersymmetric (due to the appearance of the complex-conjugated scalar fields in the terms
exhibited explicitly above). Thus, the MSSM Higgs sector possesses Type-II Yukawa couplings as a
consequence of supersymmetry (and not a Z2 discrete symmetry as discussed in Section 1.3.7.)

The Higgs potential of the MSSM is:

V =
(
m2
d + |µ|2

)
Hi∗
d H

i
d +

(
m2
u + |µ|2

)
Hi∗
u H

i
u − b

(
εijHi

dH
j
u + h.c.

)
+ 1

8
(
g2 + g′ 2

) [
Hi∗
d H

i
d −Hj∗

u H
j
u

]2 + 1
2g

2|Hi∗
d H

i
u|2 , (1.99)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0, and the sum over repeated indices is implicit. In eq. (1.99),
µ is a supersymmetric Higgsino mass parameter and m2

d, m2
u, b are soft-supersymmetry-breaking

squared-mass parameters. The quartic Higgs couplings are related to the SU(2) and U(1)Y gauge
couplings as a consequence of SUSY.

After minimizing the Higgs potential, the neutral components of the Higgs fields (in an ap-
propriately chosen phase convention) acquire real positive vevs: 〈H0

d〉 = vd and 〈H0
u〉 = vu, where

v2 ≡ v2
d + v2

u = 2m2
W /g

2 = (174 GeV)2. The ratio of the two vevs is

tan β ≡ vu
vd
, 0 ≤ β ≤ 1

2π . (1.100)

In the Higgs basis, the phase of H2 can be chosen such that Z5, Z6 and Z7 are real. In particular,

Z1 = Z2 = 1
4 (g2 + g′ 2) cos2 2β , Z3 = Z5 + 1

4 (g2 − g′ 2) , Z4 = Z5 − 1
2g

2 ,

Z5 = 1
4 (g2 + g′ 2) sin2 2β , Z7 = −Z6 = 1

4 (g2 + g′ 2) sin 2β cos 2β , (1.101)

in the notation of Section 1.3.1. The existence of a Higgs basis where Z5, Z6 and Z7 are simultaneously
real implies that the tree-level MSSM Higgs sector is CP-conserving. Thus the neutral Higgs mass-
eigenstates are states of definite CP.

The five physical Higgs particles consist of a charged Higgs pair

H± = H±d sin β +H±u cosβ , (1.102)

with squared mass given by m2
H± = m2

A +m2
W , one CP-odd scalar

A0 =
√

2
(
ImH0

d sin β + ImH0
u cosβ

)
, (1.103)

with squared mass given by m2
A = 2b/ sin 2β, and two CP-even scalars

h0 =
√

2
[
−(ReH0

d − vd) sinα+ (ReH0
u − vu) cosα

]
,

H0 =
√

2
[
(ReH0

d − vd) cosα+ (ReH0
u − vu) sinα

]
,

where we have now labeled the Higgs fields according to their electric charge. The angle α arises
when the CP-even Higgs squared-mass matrix (in the H0

d—H0
u basis) is diagonalized to obtain the

physical CP-even Higgs states. Equivalently, one can perform the diagonalization of the CP-even
Higgs squared-mass matrix in the Higgs basis, in which case the corresponding diagonalization angle
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is given by α − β. All Higgs masses and couplings can be expressed in terms of two parameters
usually chosen to be mA and tan β.

The CP-even Higgs bosons h and H are eigenstates of the squared-mass matrix, which in the
Higgs basis is given by

M2
e =

(
m2
Z cos2 2β −m2

Z sin 2β cos 2β
−m2

Z sin 2β cos 2β m2
A +m2

Z sin2 2β

)
. (1.104)

The eigenvalues of M2
e are the squared-masses of the two CP-even Higgs scalars

m2
H,h = 1

2

(
m2
A +m2

Z ±
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)
, (1.105)

and α is given by

cos 2α = − cos 2βm
2
A −m2

Z

m2
H −m2

h

, sin 2α = − sin 2βm
2
A +m2

Z

m2
H −m2

h

. (1.106)

Conventionally, one takes 0 ≤ β ≤ 1
2π and − 1

2π ≤ α ≤ 0. It follows that [cf. eqs. (1.60) and (1.61)]:

cos2(β − α) = m2
Z cos2 2β −m2

h

m2
H −m2

h

, (1.107)

cos(β − α) sin(β − α) = m2
Z sin 2β cos 2β
m2
H −m2

h

. (1.108)

Note that 0 ≤ β − α < π so that 0 ≤ sin(β − α) ≤ 1 and the sign of cos(β − α) is given by the sign
of sin 4β.

The tree-level mass of the lightest CP-even Higgs boson of the MSSM is bounded,

mh ≤ mZ | cos 2β| ≤ mZ . (1.109)

This inequality arises because all Higgs self-coupling parameters of the MSSM are related to the
squares of the electroweak gauge couplings. However, radiative corrections can boost the upper bound
of the lightest CP-even Higgs mass above its tree level bound of mZ . The leading effects of the
radiative corrections will be discussed further below.

The tree-level couplings of the MSSM Higgs bosons are those of a CP-conserving 2HDM with
Type-II Higgs–fermion Yukawa couplings. For example, the Higgs couplings to gauge boson pairs
(V = W or Z) are given by

ghV V = gVmV sβ−α , gHV V = gVmV cβ−α , (1.110)

where gV ≡
√

2mV /v. There are no tree-level couplings of A or H± to V V . The couplings of
V to two neutral Higgs bosons (which must have opposite CP-quantum numbers) are denoted by
gφAZ(pφ − pA), where φ = h or H and the momenta pφ and pA point into the vertex, and

ghAZ = gcβ−α
2 cos θW

, gHAZ = − gsβ−α
2 cos θW

. (1.111)

The properties of the three-point and four-point Higgs boson–vector boson couplings are conveniently
summarized in eq. (1.62) by listing the couplings that are proportional to either sin(β−α) or cos(β−α)
or are angle-independent. Finally, the couplings of the MSSM Higgs bosons to quarks are given in
eqs. (1.77) and (1.79) [with the corresponding coupling to leptons obtained by the substitutions
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specified below eq. (1.79)].
The decoupling behavior of the MSSM Higgs sector is exhibited in the limit of mA � mZ , where

the corresponding tree-level squared-masses of the Higgs bosons are given by:

m2
h ' m2

Z cos2 2β ,

m2
H ' m2

A +m2
Z sin2 2β ,

m2
H± = m2

A +m2
W . (1.112)

Since sin(β − α) ' 1 and mH ' mA in the decoupling limit, eq. (1.108) yields

cos(β − α) = m2
Z sin 4β
2m2

A

+O
(
m4
Z

m4
A

)
. (1.113)

Note that eq. (1.113) follows from the corresponding 2HDM result given by eq. (1.68) when Z6 is
given by its supersymmetric value [cf. eq. (1.101)].

As expected, in the decoupling limit mA ' mH ' mH± , up to corrections of O(m2
Z/mA), and

cos(β − α) = 0 up to corrections of O(m2
Z/m

2
A). In general, in the limit of cos(β − α)→ 0, all the

h0 couplings to SM particles approach their SM limits. In particular, if λV is a Higgs coupling to
vector bosons and λt [λb] are Higgs couplings to up-type [down-type] fermions, then

λV
[λV ]SM

= sin(β − α) = 1 +O
(
m4
Z sin2 4β
m4
A

)
, (1.114)

λt
[λt]SM

= 1 +O
(
m2
Z cos2 β cos 2β

m2
A

)
. (1.115)

λb
[λb]SM

= 1 +O
(
m2
Z sin2 β cos 2β

m2
A

)
. (1.116)

Note that the approach to decoupling is fastest in the case of the hV V couplings and slowest in the
case of the hbb couplings at large tan β (where the corresponding trigonometric factor in eq. (1.116)
is maximal). This implies that at large tan β, a precision measurement of the h0bb̄ coupling provides
the greatest sensitivity to mA [126].

When radiative corrections are incorporated, additional parameters of the supersymmetric model
enter via virtual loops. The impact of these corrections can be significant [127, 128, 129]. For
example, the tree-level prediction for the upper bound of the lightest CP -even Higgs mass, given
by eq. (1.109)[130, 131, 132], can be substantially modified when radiative corrections are included.
The qualitative behavior of these radiative corrections can be most easily seen in the large top squark
mass limit. Denoting the geometric mean of the two top squark squared masses by M2

S ≡Mt̃1
M
t̃2

and assuming that mA > mZ and that the top squark mass splitting is small compared to MS ,
the predicted upper bound for mh (which reaches its maximum at large tan β and mA � mZ) is
approximately given by

m2
h
<∼ m

2
Z cos2 2β + 3g2m4

t

8π2m2
W

[
ln
(
M2

S
m2
t

)
+ X2

t

M2
S

(
1− X2

t

12M2
S

)]
, (1.117)

where Xt ≡ At − µ cotβ is the top squark mixing factor.
A more complete treatment of the radiative corrections [133, 134, 135] shows that eq. (1.117)

somewhat overestimates the true upper bound of mh. These more refined computations, which
incorporate renormalization group improvement and the leading two-loop (and even some three-
loop) contributions, yield mh <∼ 130 GeV (with an accuracy of a few GeV) for mt = 173 GeV and
MS <∼ 2 TeV. The observed Higgs mass of 126 GeV is consistent with this bound.
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Radiative corrections also can have an important impact on the MSSM Higgs couplings. Although
radiatively-corrections to couplings generically tend to be at the few-percent level, there is some
potential for significant effects. In certain cases, radiative corrections are enhanced for values of
tan β � 1. In addition, CP-violating effects induced by complex SUSY-breaking parameters that
enter in loops, can yield new effects in the Higgs sector not present at tree-level.

One leading correction of note is the renormalization of the mixing angle α. This modifies the
quantity cos(β − α) which governs the decoupling limit and plays a critical role in the couplings of
the Higgs bosons. Employing the same approximations used in obtaining eq. (1.117), one finds that
eq. (1.107) is modified by replacing the tree-level bound, m2

Z cos2 β, with the radiatively-corrected
bound given in eq. (1.117), and replacing mh and mH with the corresponding loop-corrected masses.

However, this approximation can still miss some important loop contributions that can drastically
alter the tree-level results. Let MSUSY characterize the mass scale of SUSY-breaking (or equivalently,
the masses of the superpartners that appear in the loops that contribute to the radiative corrections).
If MSUSY � mA, then one can integrate out the superpartners that appear in the loops and obtain
an effective low-energy theory that is equivalent to the most general 2HDM. In this effective 2HDM,
the supersymmetric value of Z6 given in eq. (1.101) is modified by radiative corrections. In certain
special regions of the MSSM parameter space, the radiative corrections are tan β-enhanced and can
approximately cancel out the tree-level value for a particular (large) value of tan β, leaving Z6 ' 0.
This is the alignment limit (which is not possible in the MSSM Higgs sector at tree-level) and yields
cos(β − α) ' 0 in light of eq. (1.68). In this case, the lightest CP-even Higgs boson is very SM-like,
whereas the other Higgs bosons of the model need not be significantly heavier.

Moreover, the supersymmetric Yukawa couplings given in eq. (1.97) are modified by the radiative
corrections, hq → hq + δhq (q = u, d). In particular, since the effective 2HDM below the SUSY-
breaking scale does not respect supersymmetry, the wrong-Higgs Yukawa interactions given in
eq. (1.98) are also generated by the radiative corrections; the corresponding Yukawa couplings will
be denoted by h′q ≡ ∆hq. Of particular interest are the wrong Higgs Yukawa couplings to bottom
quarks,

∆hb ' hb
[

2αs
3π µM3I(Mb̃1

,Mb̃2
,Mg) + h2

t

16π2µAtI(Mt̃1 ,Mt̃2 , µ)
]
,

where, M3 is the Majorana gluino mass, µ is the supersymmetric Higgs-mass parameter, and b̃1,2 and
t̃1,2 are the mass-eigenstate bottom squarks and top squarks, respectively. The loop integral is given
by

I(a, b, c) = a2b2 ln(a2/b2) + b2c2 ln(b2/c2) + c2a2 ln(c2/a2)
(a2 − b2)(b2 − c2)(a2 − c2) . (1.118)

In the limit where at least one of the arguments of I(a, b, c) is large,

I(a, b, c) ∼ 1/max(a2, b2, c2) . (1.119)

Thus, in the limit where M3 ∼ µ ∼ At ∼Mb̃ ∼Mt̃ ∼MSUSY � mZ , the one-loop contributions to
∆hb do not decouple.

The wrong-Higgs couplings yield tan β-enhanced modifications of some physical observables.
After expressing the Higgs doublet fields Hd and Hu in terms of the physical Higgs mass-eigenstates,
one can identify the the b-quark mass,

mb = hbv cosβ
(

1 + δhb
hb

+ ∆hb tan β
hb

)
≡ hbv cosβ(1 + ∆b) , (1.120)

which defines the quantity ∆b. In the limit of large tan β the term proportional to δhb can be
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neglected, in which case,
∆b '

∆hb
hb

tan β . (1.121)

Thus, ∆b is tan β–enhanced if tan β � 1. As previously noted, ∆b survives in the limit of large
MSUSY; this effect does not decouple.

From the effective Yukawa Lagrangian, one can obtain the couplings of the physical Higgs bosons
to third generation fermions. For example, the one-loop corrections can generate measurable shifts in
the decay rate for h0 → bb̄,

gh◦bb̄ = − gmb

2mW

sinα
cosβ

[
1 + 1

1 + ∆b

(
δhb
hb
−∆b

)
(1 + cotα cotβ)

]
. (1.122)

At large tan β ∼ 20—50, ∆b can be as large as 0.5 in magnitude and of either sign, leading to a
significant enhancement or suppression of the Higgs decay rate to bb̄.

If mA ∼ O(MSUSY), then below the scale of supersymmetry-breaking one must also integrate
out the second Higgs doublet (in the Higgs basis). In this case, the low-energy effective Higgs theory
is a one-Higgs doublet model, and thus gh0bb̄ must approach its SM value. Indeed in this limit,

1 + cotα cotβ = −2m2
Z

m2
A

cos 2β +O
(
m4
Z

m4
A

)
.

Thus the previously non-decoupling SUSY radiative corrections decouple for mA � mZ as expected.
The one-loop corrected effective Higgs-fermion Lagrangian can exhibit CP-violating effect due to

possible CP-violating phases in µ, At and M3. This leads to mixed-CP neutral Higgs states and CP-
violating couplings. This is the so-called CPX scenario of the MSSM. In the limit of mH± �MSUSY,
the effective low-energy theory is the most general CP-violating 2HDM. Thus, the model-independent
treatment of the general 2HDM is applicable. Further details on the CPX scenario can be found in
Refs. [136, 137, 138, 139].
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1.4 Other extended Higgs sectors
1.4.1 Constraints from the tree-level rho parameter

Apart from the part of the SM that is governed by the gauge principle, there is no theoretical principle
for fixing the number of Higgs scalars. Indeed, there are a variety of possibilities for non-minimal
Higgs sectors that are consistent with phenomenological requirements. We have already treated in
detail the two-Higgs doublet extension of the SM in Section 1.3. However, it is also possible that the
Higgs sector contains additional Higgs doublets and/or one or more non-doublet representations.

A very strong constraint on exotic Higgs sectors derives from the electroweak rho parameter
whose experimental value is very close to unity. The current value for the rho parameter is given by
ρ = 1.0008+0.0017

−0.0007 [29]. In the SM, the rho parameter is exactly unity at the tree level,

ρ = m2
W

m2
Z cos2 θ

= 1. (1.123)

Moreover, including radiative corrections, the SM with the Higgs boson mass of 126 GeV yields a
value of ρ that is consistent with the experimentally measure value [30]. Models with only Higgs
doublets and singlets do not spoil the tree-level prediction of ρ = 1. However, the addition of scalars
that transform under higher dimensional representations generally violate the tree-level prediction of
ρ = 1.

In a general SU(2)×U(1) model with n scalar multiplets φi with isospin Ti and hypercharge Yi,
the rho parameter is given at the tree level by [31]

ρ = 1 +
∑
i[4Ti(Ti + 1)− 3Y 2

i ]|vi|2ci∑
i 2Y 2

i |vi|2
, (1.124)

where

ci =

1, (T, Y ) ∈ complex representation,
1
2 , (T, Y = 0) ∈ real representation.

(1.125)

For a Higgs sector composed of complex (c = 1) hypercharge-1 Higgs doublets (T = 1/2 and Y = 1).
it follows that ρ = 1, independently of the value of the vacuum expectation value v. One can also add
an arbitrary number of Higgs singlets (T = Y = 0) without changing the value of ρ. To automatically
have ρ = 1 independently of the Higgs vevs, one must satisfy the Diophantine equation [140],

(2T + 1)2 − 3Y 2 = 1 , (1.126)

for non-negative integer values of (2T, Y ). The smallest nontrivial solution beyond the complex Y = 1
Higgs doublet is a complex Higgs septet with T = 3 and Y = 4.

For extended Higgs sectors with multiplets that do not satisfy eq. (1.126), the tree-level value
for ρ will generally differ from 1. In order to be consistent with the rho parameter data, there are
two possible strategies. First, one can fine-tune the values of the vevs vi such that ρ = 1. This may
require some vevs to be significantly smaller than 174 GeV, or it may require an unnatural cancellation
of terms in the numerator of the second term in eq. (1.124). As an example of the first strategy,
consider the effect of adding to the Standard Model an extra hypercharge-two complex scalar triplet
field φ2 = ∆ (T2 = 1, Y2 = 2) , which has been employed for generating the neutrino mass by the
so-called type-II seesaw mechanism [37]. Denoting the vev of the neutral component of the scalar
triplet by v∆, eq. (1.124) yields

ρ = 1 + 2v2
∆/v

2

1 + 4v2
∆/v

2 . (1.127)
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Therefore, there is a strong upper bound for v∆ ( . a few GeV ) in light of the rho parameter data.
Second, one can make a clever choice of Higgs multiplets such that the required cancellation of

terms in the numerator of the second term in eq. (1.124) appears to be natural. The simplest example
of this mechanism is the Georgi-Machacek model [141], which consists of the SM hypercharge-one
complex scalar doublet Φ(T = 1

2 , Y = 1) , a complex hypercharge-two scalar triplet ∆(T = 1, Y = 2)
and a real scalar triplet ξ(T = 1, Y = 0). Suppose that the vevs of the neutral fields of the two
scalar triplets are equal, v∆ = vξ, which can be arranged with a special choice of the scalar potential
parameters corresponding to an enhanced SU(2)L×SU(2)R global symmetry. In this case, it is easy
to check that eq. (1.124) yields ρ = 1 independently of the value of the vev of the scalar doublet,
vΦ, and the common value of the triplet vevs, v∆ = vξ. Indeed v∆/vΦ ∼ 1 is phenomenologically
viable, which would lead to a very different phenomenology than the simple doublet plus triplet model
considered above. However, since the enhanced SU(2)L×SU(2)R global symmetry of the scalar
potential is not respected by the hypercharge gauge interactions and the Yukawa interactions, the
condition that v∆ = vξ is not stable under radiative corrections and therefore must be considered as
a tuning of parameters [142].

1.4.2 An upper bound for the Higgs coupling to vector boson pairs

Consider a CP-conserving extended Higgs sector that has the property that ρ = 1 and no tree-level
ZW±φ∓ couplings (where φ± are physical charged scalars that might appear in the scalar spectrum).
Then it follows that [28]∑

i

g2
φiV V = g2m2

W = g2
hSMV V

, m2
W gφiZZ = m2

ZgφiWW , (1.128)

where the sum is taken over all neutral CP-even scalars φi and hSM is the Higgs boson of the SM.
In this case, it follows that gφiV V ≤ ghSMV V for all i. Models that contain only scalar singlets and
doublets satisfy the requirements stated above and hence respect the sum rule and the coupling
relation given above. However, it is possible to violate gφiV V ≤ ghSMV V and m2

W gφiZZ = m2
ZgφiWW

if tree-level ZW±φ∓ and/or φ++W−W− couplings are present [28, 143, 144]. A more general sum
rule is: ∑

i

g2
φiV V = g2m2

W +
∑
k

|gφ++
k

W−W− |
2 . (1.129)

The Georgi-Machacek model provides an instructive example [141, 145, 146]. This model consists of
a complex Higgs doublet with Y = 1, a complex Higgs triplet with Y = 2 and a real Higgs triplet
with Y = 0, with doublet vev vΦ and triplet vevs v∆ = vξ, such that v2 = v2

Φ + 8v2
∆.

It is convenient to write [146]

cH ≡ cos θH = vΦ√
v2

Φ + 8v2
∆

,

and sH ≡ sin θH = (1− c2H)1/2. Then, the following couplings are noteworthy:

H0
1W

+W− : gcHmW , H ′ 01 W+W− :
√

8/3gmW sH ,

H0
5W

+W− :
√

1/3gmW sH , H++
5 W−W− :

√
2gmW sH .

H ′ 01 and H0
5 , H++

5 have no coupling to fermions, whereas the H0
1 coupling to fermions is given by

H0
1ff̄ : gmq

2mW cH
.
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Table 1.12. The deviations in the Higgs boson couplings from the SM values in various extended Higgs sectors. φ,
∆, ξ and ϕ7 are respectively denoted as Higgs fields with (T, Y )=(1/2, 1), (1, 2), (1, 0) and (3, 4). In the second
and third column, vX is the vev of the Higgs field X. The mixing angle α is defined for each extended Higgs sector
in Ref. [144].

Model tanβ tanβ′ chWW chZZ

φ1 + φ2 (2HDM) vφ2/vφ1 vφ2/vφ1 sin(β − α) sin(β − α)
φ+ ∆ (cHTM)

√
2v∆/vφ 2v∆/vφ cosβ cosα+

√
2 sinβ sinα cosβ′ cosα+ 2 sinβ′ sinα

φ+ ξ (rHTM) 2vξ/vφ - cosβ cosα+ 2 sinβ sinα cosα
φ+ ∆ + ξ (GM model) 2

√
2v∆/vφ 2

√
2v∆/vφ cosβ cosα+ 2

√
6

3 sinβ sinα cosβ cosα+ 2
√

6
3 sinβ sinα

φ+ ϕ7 4vϕ7/vφ 4vϕ7/vφ cosβ cosα+ 4 sinβ sinα cosβ cosα+ 4 sinβ sinα

In general H0
1 and H ′ 01 can mix.

In the absence of H0
1 –H ′ 01 mixing and cH = 1, we see that the couplings of H0

1 match those
of the SM. In contrast, in the case of sH =

√
3/8, the H ′ 01 coupling to W+W− matches that of

the SM. Nevertheless, this does not saturate the ΦiWW sum rule! Moreover, it is possible that
the H ′ 01 W+W− coupling is larger than gmW , without violating the ΦiWW sum rule. Including
H0

1 –H ′ 01 mixing allows for even more baroque possibilities not possible in a multi-doublet extension
of the SM. Deviations above the hSMV V coupling by as much as 10% or more are possible. Thus we
have demonstrated the possibility that

g2
φV V > g2

hSMV V
, (1.130)

in Higgs sectors with exotic (larger than doublet) Higgs representations.
In Table 1.12, the deviations in the Higgs boson couplings from the SM values are listed in

various extended Higgs sectors (further details are given in Ref. ([144]). Moreover, except for the
case of the 2HDM, the couplings of the SM like Higgs boson with the weak gauge bosons shown in
Table 1.12 can be greater than 1. At the ILC the hV V couplings can be measured at the percent
level. Therefore, even if extra Higgs bosons are not discovered directly, a Higgs sector with exotic
multiplets can be distinguished via the precision measurement of the hV V coupling.

1.4.3 Adding Higgs singlets

The introduction of an additional Higgs singlet field to the SM Higgs sector does not affect ρ = 1,
and does not generate any flavor changing Higgs-mediated neutral current processes as it does not
couple to quarks, leptons and gauge bosons. For example, such a singlet field has been introduced in
new physics models with an extra U(1) gauge symmetry, where the U(1) boson couples to B−L [147].
A neutral singlet scalar field is also employed in the Next-to-Minimal supersymmetric extension of the
Standard Model (NMSSM) along with the second doublet field required in SUSY [148].

The existence of a singlet field φ2 = S (T2 = 0, Y2 = 2) only change the Higgs boson couplings
via mixing of the singlet and doublet Higgs fields. In the model with only one additional neutral
singlet scalar field to the SM, S and Φ can be parameterized as

Φ =
(

ω+

v + (φ+ iχ)/
√

2

)
, S = vS + φS (1.131)

where v = 174 GeV, and vS is the vev of S. The two CP-even mass eigenstates h and H are defined
by

h = φ cos θ − φS sin θ, H = φ sin θ + φS cos θ. (1.132)
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In models with an extra U(1) gauge boson, this boson absorbs the CP-odd component χS via the
Higgs mechanism. The difference from the SM is just one additional CP-even scalar boson H. There
is no physical charged scalar state in this model. All of the SM fields obtain mass from the vev, v,
while the couplings of h and H are obtained by the replacement of φSM → h cos θ +H sin θ in the
Standard Model Lagrangian.

In the decoupling region θ ∼ 0, h is the SM-like Higgs boson with its couplings reduced from
their SM values by cos θ ∼ 1− θ2/2. On the other hand, when tan θ ∼ O(1), both h and H behave
as SM-like Higgs bosons, sharing the SM couplings to gauge bosons and fermions. If h and H are
almost degenerate in mass, the two bosons might appear as a single SM Higgs boson in the LHC
experiments. At the ILC, by tagging the Higgs mass in e+e− → Z + (h,H) by the invariant mass
recoiling against the Z, the two Higgs bosons could be better separated. The ILC phenomenology of
the Higgs sector in the minimal B-L model is surveyed in Ref. [149].

1.4.4 Adding Higgs triplets

Triplet Higgs fields are introduced in several new physics models. An example of these models is the
Higgs sector with the SM Higgs doublet Φ with an additional triplet ∆ with T2 = 1, Y2 = 2 . If ∆
carries the lepton number of 2, it can couple to leptons by

LY = hijLiciτ2∆LjL + h.c. (1.133)

If ∆ obtains the vev that is proportional to the explicit violation term for the lepton number in the
Higgs sector, then a neutrino mass matrix is generated,

Mij =
√

2hijv∆. (1.134)

The Higgs fields Φ and ∆ are expressed in terms of component fields as

Φ =
(

ω+

vΦ + (φ+ iχ)/
√

2

)
, ∆ =

(
∆+/
√

2 ∆++

v∆ + (δ + iη)/
√

2 −∆+/
√

2

)
, (1.135)

where vΦ and v∆ are vevs of Φ and ∆. The physical scalar states are two CP-even (h and H), a
CP-odd (A), a singly charged pair (H±) and a doubly charged pair (H±±), which are derived from
the component fields by diagonalizing the squared-mass matrices with the mixing angles α, β0 and
β± as

h = φ cosα+ δ sinα, H = −φ sinα+ δ cosα,

A = −χ sin β0 + η cosβ0, H± = −φ± sin β± + ∆± cosβ±, H++ = ∆++.(1.136)

In light of the constraint from the rho parameter, v∆ � v must be taken, and then the masses of the
scalar bosons are given by

m2
h ' 2λ1v

2, m2
H++ −mH+ ' m2

H+ −m2
A, m2

H ' m2
A, (1.137)

with α� 1, β0 � 1, and β± � 1, where λ1 represents the quartic coupling constant of the doublet
field. Therefore, h behaves as the SM Higgs boson, and the others scalar states satisfy the relations
among the masses given in eq. (1.137).

The most interesting characteristic feature in this model is the existence of doubly charged Higgs
bosons H±±. Its discovery would be a direct probe of the exotic Higgs sectors. In general, doubly
charged Higgs fields can arise from the singlet with Y = 4, the doublet with Y = 3 and the triplet
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Figure 1.15. Decay branching ratio of H++ as a function of v∆. In the left figure, mH++ is fixed to be 300 GeV,
and ∆m is taken to be zero. In the middle figure, mH++ is fixed to be 320 GeV, and ∆m is taken to be 10 GeV. In
the right figure, mH++ is fixed to be 360 GeV, and ∆m is taken to be 30 GeV.

with Y = 2. In the model with an additional triplet field, the doubly charged Higgs bosons H±± can
decay into `±`±, H±W± and W±W± depending on the magnitude of v∆ [150]. In Fig. 1.15 , the
branching ratios are shown as a function of the vacuum expectation value of the triplet field, v∆, for
the cases with the mass difference ∆m = mH++ −mH+ = 0, 10 GeV and 30 GeV [151]. When
v∆ is smaller than 10−3 GeV, the dilepton decay H±± → `±`± is dominant. The signal directly
shows the existence of the doubly charged scalar boson with lepton number 2, which can be a strong
evidence for the neutrino mass generation via Eq. (1.134). At the LHC, the current search results for
H±± using this decay mode gives the lower bound on the mass of mH++ > 400 GeV [152, 153].

In contrast, when v∆ is sufficiently larger than 10−3 GeV, the diboson decay H±± →W±W±

becomes dominant. In this case, the signal can also be same sign four leptons, but its rate is reduced
by the branching ratios of leptonic decays of W s. The current lower bound from this final state is
only mH++ > 60 GeV at 95% CL from data at the LHC with 5 fb−1 [154] as exhibited in Fig. 1.16.
This bound is greatly relaxed as compared to the dilepton decay scenario. By the extrapolation of the
data to 20 fb−1 with the same collision energy, the lower limit is estimated to be 85 GeV.

If there is a mass difference between H±± and H±, the parameter region where H±± can
mainly decay into H±W± appears. For example, for v∆ = 1 GeV with a mass difference ∆m =
mH++ −mH+ ∼ 10 GeV, the decay into H+W+ dominates for a wide range of v∆. In this case,
H++ could be identified through its cascade decay. If there is a mass difference with the opposite
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Figure 1.16. The signal cross section after the M`` cut as a function of mH++ with the collision energy to be 7
TeV. The light (dark) shaded band shows the 95% CL (expected) upper limit for the cross section from the data for
the µ+µ+ channel with the integrate luminosity to be 4.7 fb−1 (20 fb−1).
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sign, ∆m ∼ −10 GeV for v∆ ∼ 1 GeV, H±± →W+W+ is dominant.
There are wide regions of parameter space where the diboson decay is dominant. In this case, a

relatively light H±± with a mass of few 100 GeV is expected to be still allowed even after the LHC
run at 14 TeV with an integrated luminosity with 3000 fb−1. The H±± can be pair produced at the
ILC with √s = 250 GeV or 500 GeV, and a doubly-charged Higgs signal can be easily detected.

1.4.5 The NMSSM Higgs sector

The minimal Higgs sector required for an anomaly-free supersymmetric extension of the Standard
Model consists of two Higgs doublets as described in Section 1.3.10. But, the Higgs sector of
the MSSM has a number of troubling features. First, the Higgs-Higgsino Lagrangian contains a
dimensionful parameter µ, which in principle can be arbitrarily large. However, phenomenological
considerations require this parameter to be no larger than a typical supersymmetry-breaking mass
parameter, which should be of O(1 TeV) or less in order to provide a natural explanation for the
origin of the scale of electroweak symmetry breaking (EWSB). Second, the coefficients of the quartic
terms of the MSSM Higgs potential are fixed by the SU(2)×U(1) gauge couplings g and g′. This
is the origin of the tree-level bound mh ≤ mZ , and implies that radiative corrections due to loops
of top-quarks must be large enough to explain the observed mass of mh ' 126 GeV. This in turn
requires rather large top squark masses and/or mixing, which pushes at least one of the top squark
masses to values above 1 TeV. Indeed, there is already considerable tension in the MSSM between
achieving a large enough Higgs mass while maintaining a natural explanation of the EWSB scale.

In the NMSSM, one add an additional complex singlet scalar field S to the MSSM Higgs
sector. A comprehensive review of the NMSSM can be found in Refs. [148, 155]. The additional
degrees of freedom of the NMSSM Higgs sector provide an opportunity for ameliorating some
of the troubling features of the MSSM Higgs sector. In the NMSSM, one can set µ = 0 and
generate an effective µ parameter dynamically that is proportional to the vacuum expectation value
of S. Thus, a phenomenologically acceptable NMSSM Higgs sector exist that contains no new
fundamental dimensionful parameters. Second, the NMSSM scalar potential contains a new quartic
term proportional to a dimensionless parameter λ that is independent of gauge couplings. Thus,
the mass of the observed Higgs boson now depends on an unknown coupling, and it is significantly
easier to achieve the observed mass of mh ' 126 GeV without extremely large top squark masses
and/or mixing. As a result, the flexibility of the additional degrees of freedom of the NMSSM can
(somewhat) reduce the tension with naturalness as compared with the MSSM.

In this section, we briefly review the structure of the Higgs sector of the NMSSM. We first
consider the general NMSSM (sometimes called the GNMSSM [156]), in which all possible terms of
dimension-four or less are allowed in the Higgs Lagrangian. The Higgs potential of the GNMSSM is:

V = (m2
d + |µ+ λS|2)Hi∗

d H
i
d + (m2

u + |µ+ λS|2)Hi∗
u H

i
u − b(εijHi

dH
j
u + h.c.)

+m2
s|S|2 + (ξsS + 1

2bsS
2 + 1

3κAκS
3 − λAλSεijHi

dH
j
u + h.c.) (1.138)

|ξ + µsS + κS2 − λεijHi
dH

j
u|2 + 1

8
(
g2 + g′ 2

) [
Hi∗
d H

i
d −Hj∗

u H
j
u

]2 + 1
2g

2|Hi∗
d H

i
u|2 ,

where µ and µS are the supersymmetric Higgsino mass parameters, λ and κ are dimensionless
supersymmetric scalar self-interaction parameters, m2

d, m2
u, b, bs and ξ are soft-supersymmetry-

breaking squared-mass parameters, Aκ and Aλ are soft-supersymmetry-breaking mass parameters,
and ξs is a soft-supersymmetry-breaking cubed-mass parameter.

To eliminate the supersymmetric preserving mass parameters, one can impose a discrete Z3

symmetry, such that the scalar potential is invariant under {Hd, Hu, S} → ω{Hd, Hu, S} with ω3 = 1
and ω 6= 1. In this case we have µ = µs = b = bs = ξ = ξs = 0, and the scalar potential is
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specified in terms of two supersymmetric dimensionless parameters, λ and κ, and five dimensionful
supersymmetry-breaking parameters, m2

d, m2
u, m2

s, Aλ and Aκ. This model is often referred to simply
as the NMSSM (more accurately, it is also called as the Z3-invariant NMSSM).

Unlike the MSSM, the tree-level (G)NMSSM allows for the possibility of CP-violation in the
Higgs sector. For simplicity, we shall assume in the following that the (G)NMSSM scalar potential is
CP-conserving, and take all scalar potential parameters and vacuum expectation values to be real,

〈H0
d〉 = vd , 〈H0

u〉 = vu , 〈S〉 = vs . (1.139)

In this case, the scalar spectrum consists of three CP-even neutral scalars, two CP-odd neutral
scalars and a pair of charged Higgs scalars H±. It is again convenient to go to the Higgs basis in
which linear combinations of the two doublet fields, denoted by H1 and H2, are defined such that
〈H0

1 〉 = v = 174 GeV and 〈H0
2 〉 = 0, where v2 ≡ v2

u + v2
d. In this basis, the squared-mass matrix of

the CP-even neutral Higgs bosons is given by

M2
e =

 m2
Z cos2 2β + λ2v2 sin2 2β −(m2

Z − λ2v2) sin 2β cos 2β M2
e13

−(m2
Z − λ2v2) sin 2β cos 2β m2

A +m2
Z sin2 2β M2

e23

M2
e13 M2

e23 M2
e33

 , (1.140)

where
m2
A ≡

2
[
b+ λ(µsvs + ξ) + λvs(Aλ + κvs)

]
sin 2β , (1.141)

and M2
e13, M2

e23 and M2
e33 can be expressed in terms of the scalar potential parameters (explicit

expressions can be found in Ref. [156]). The parameter m2
A is no longer the squared-mass of the

CP-odd Higgs boson. Rather, it is a diagonal element of the CP-odd Higgs squared-mass matrix,

M2
o =

(
m2
A M2

o12

M2
o12 M2

o22

)
, (1.142)

where M2
o12 and M2

o22 can be expressed in terms of the scalar potential parameters (explicit expressions
can be found in Ref. [156]). The squared-masses of the neutral Higgs bosons are obtained by computing
the eigenvalues of M2

e and M2
o. Finally, the charged Higgs mass is given by

m2
H± = m2

W +m2
A − λ2v2 . (1.143)

The phenomenology of the GNMSSM is richer than that of the MSSM due to the additional
Higgs states and the larger parameter space. The simplest scenario is an MSSM-like scenario in which
either M2

e33 and M2
o22 are large and/or M2

e13, M2
e23 and M2

o12 are small. In this case, the mixing of
the singlet and doublet Higgs components is suppressed and two of the three CP-even Higgs bosons
are governed by the 2 × 2 block obtained from the first two rows and columns of M2

e, while the
doublet-like CP-odd Higgs boson has mass mA. Nevertheless, the MSSM squared-mass relations are
corrected by terms of O(λ2v2). Using eq. (1.140), it follows that the CP-even Higgs squared-mass
inequality given by eq. (1.117) is modified to [157],

m2
h ≤ m2

Z cos2 2β + λ2v2 sin2 2β + 3g2m4
t

8π2m2
W

[
ln
(
M2

S
m2
t

)
+ X2

t

M2
S

(
1− X2

t

12M2
S

)]
, (1.144)

which includes the leading one-loop radiative correction. Whereas the bound is saturated at large
tan β in the MSSM (where λ = 0), we see that in the NMSSM it is possible to have a SM-like Higgs
boson with a mass of 126 GeV for relatively modest values of tan β if λ is sufficiently large. Indeed,
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in contrast to the MSSM, one does not need as large a boost from the radiative corrections, which
means that lower top squark masses are allowed given the observed Higgs mass (thereby lessening the
tension with naturalness). Typically, the region of interest corresponds to tan β ∼ 2 and λ ∼ 0.7.
For values of λ > 0.7, the scalar self-coupling running parameter λ(Q) blows up at scales below the
Planck scale. Although such a scenario is not consistent with perturbative unification, it does lead to
some interesting model building opportunities for a highly natural Higgs boson with a mass of 126
GeV over a wide range of parameters [158].

The scalar states that are dominantly singlet can only couple to gauge bosons and fermions
through the small doublet admixture in their wave functions. Thus, these states are very difficult to
produce and observe at the ILC. One possible exception to this statement occurs in the limit where
both the mixing terms M2

e13, M2
e23 and M2

o12 are small, and the diagonal elements of the CP-even
and/or CP-odd scalar squared-mass matrices are also small. In this case, the lightest scalar particles
of the Higgs spectrum can be dominantly singlet. This leaves open the possibility that the decay
channels h→ h1h1 and/or h→ a1a1 are allowed, where h is identified as the observed SM-like Higgs
boson and h1 and a1 are the light dominantly singlet CP-even and CP-odd scalar states. These
light states would then decay dominantly via their small scalar doublet admixtures into a pair of the
heaviest fermions that are kinematically allowed. There are some experimental limits to this scenario
due to searches at LEP, Tevatron and LHC, but allowed regions of the (G)NMSSM parameter space
with light singlet-like scalars still persist.

Finally, it is possible that the mixing between singlet and doublet components is not particularly
small. In this case, one can still find parameter regimes (e.g. large mA) in which the lightest CP-even
state is dominantly doublet and SM-like (to be identified with the observed Higgs boson), while the
heavier states are admixtures of doublet and singlet states. In this scenario, all Higgs states are in
play and can be studied at the ILC if their masses are less than half the center-of-mass energy.

1.5 Model-independent treatments of Higgs properties

In the quest for identifying the underlying physics of electroweak symmetry breaking it will be crucial
to study the properties of the observed signal at 126 GeV with high precision, taking into account also
the limits from Higgs searches in other regions of the parameter space. Besides the interpretation of
the experimental results in specific models, it is also useful to express the properties of the Higgs
sector in terms of less model-dependent parameterizations. For the observed signal at 126 GeV this
refers in particular to its mass, spin, CP properties and couplings.

While the mass can be determined in an essentially model-independent way, and the spin quantum
number for a single resonance can be obtained from confronting distinct hypotheses for different spin
states with the data (see below), the determination of CP properties and couplings is more involved.
An observed state can in general consist of any admixture of CP-even and CP-odd components.
Testing the distinct hypotheses of a pure CP-even and a pure CP-odd state can therefore only be a
first step in determining the CP properties of a new particle. While it is an obvious goal to extract
information on the couplings of the discovered state to other particles, some care is necessary regarding
the actual definition of those couplings. It would be tempting to treat the couplings in a certain model,
for instance the SM, as independent free parameters and perform a fit to the experimental data. This
is not possible, however, once (electroweak) higher-order corrections are taken into account, since
model-specific relations between the couplings and the other parameters of the theory are required to
ensure properties like UV-finiteness and gauge cancellations.

Moreover, modifying a certain coupling as compared to its form in the SM will in general
change both the overall coupling strength and the tensor structure of the coupling. The latter
implies a modification of the CP properties of the considered state. As a consequence, in general the
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determination of couplings cannot be treated separately from the determination of the CP properties.
Accordingly, in order to analyze the coupling properties of the discovered state a well-defined

framework is required where the state-of-the art predictions within the SM (or any other reference
model), including all relevant higher-order corrections, are supplemented by a parameterization of
possible deviations of the couplings from their reference values (including also possible changes of
the tensor structure). If one assumes that effects of new physics occur only at rather high scales,
such that the contributions of heavy degrees of freedom can be systematically integrated out, such a
framework can be formulated with the help of an effective Lagrangian.

1.5.1 Effective Lagrangian treatments

Assuming that effects of new light particles in loops are absent, physics beyond the Standard Model
(BSM) can be described via an effective Lagrangian in terms of the SM fields. This approach has been
pioneered in Ref. [159], where a list of operators of dimensions 5 and 6 in the linear parameterization
of the Higgs sector with a Higgs doublet has been provided. Those higher-dimensional operators arise
from integrating out the contributions of heavy degrees of freedom. Restricting to operators of up to
dimension 6 that are relevant for Higgs physics, such an effective Lagrangian has the general form

Leff = L(4)
SM + 1

Λ2

∑
k

αkOk, (1.145)

where L(4)
SM is the SM Lagrangian, Ok ≡ Od=6

k denotes dimension-6 operators, αk the corresponding
Wilson coefficients, and Λ is the scale of new physics.

Taking into account all dimension-6 operators that are in accordance with gauge invariance
leads to a rather large number of operators. A minimal complete basis can be constructed using
the equations of motions to eliminate redundant operators [160]. Proposals that are suitable for the
analysis of the upcoming data at the LHC are currently under discussion, (e.g., see Ref. [47] and
references therein). For the analysis of the LHC results up to 2012 an “interim framework” has been
adopted that is based on a simplified approach using “leading order inspired” scale factors κi [47, 161].
In particular, in order to make use of reinterpretations of searches that have been performed within
the context of the SM, in this approach only overall changes in the coupling strengths are considered,
while effects that change kinematic distributions are not taken into account.

1.5.2 Simplified approach for the analysis of Higgs couplings

The searches for a SM-like Higgs carried out at the LHC so far have mainly focused on the production
processes gluon fusion, gg → H, weak-boson fusion, qq′ → qq′H, associated production with
W or Z, qq̄ → WH/ZH, and associated production with a top-quark pair, qq̄/gg → tt̄H. The
searches were based on the decay channels γγ, ZZ(∗), WW (∗), bb̄ and τ+τ−. The couplings involved
in those processes have been analyzed in an “interim framework” under the following simplifying
assumptions [47, 161]:

• The observed signal is assumed to correspond to a single narrow resonance. The case of several,
possibly overlapping, resonances is not considered.

• The zero-width approximation is assumed for this state. This implies that all channels can be
decomposed into a production cross section times a decay branching ratio.

• Only modifications of coupling strengths, i.e. of absolute values of couplings, are considered.
No modifications of the tensor structure as compared to the SM case are taken into account.
This means in particular that the observed state is assumed to be a CP-even scalar.

In order to parameterize possible deviations from the SM predictions in this framework scale
factors κi are introduced. The scale factors κi are defined in such a way that the cross sections σii or
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the partial decay widths Γii associated with the SM particle i scale with the factor κ2
i when compared

to the corresponding SM prediction. For a process ii→ H → jj the application of the scale factors
results in the term κ2

iκ
2
j/κ

2
H relative to the SM prediction, where κ2

H denotes the scale factor for the
total width of the observed signal.

By construction, the SM predictions according to the current state-of-the-art, i.e. including the
available higher-order corrections, are recovered if all κi = 1. Since higher-order corrections in general
do not factorize with respect to the rescalings, the theoretical accuracy degrades for κi 6= 1. This is a
drawback of this simplified framework in comparison to the effective Lagrangian approach discussed
above, where possible deviations from the SM predictions are parameterized in a more systematic way.

For loop-induced processes such as gg → H and H → γγ the scale factors κg and κγ are in
general treated as free parameters. If on the other hand one assumes that there are no contributions of
BSM particles to the loops, those scale factors can be related to the scale factors of the corresponding
SM particles in the loop, e.g. κγ = κγ(κb, κt, κτ , κW ,mH) in this approximation.

The total width ΓH is the sum of all Higgs partial widths. The corresponding scale factor κ2
H ,

i.e. ΓH = κ2
HΓSM

H , in general needs to be treated as a free parameter. Under the assumption that no
additional BSM Higgs decay modes (into either invisible or undetectable final states) contribute to the
total width and making additional approximations for the scale factors of the currently undetectable
decay modes into SM particles, e.g. κc = κt, κs = κb etc., the scale factor κ2

H can be related to the
scale factors of the partial widths of the different decay modes in the SM,

κ2
H = κ2

H(κj ,mH), (1.146)

where j = W,Z, b, τ, . . ..
Within this interim framework, several benchmark parameterizations have been considered. Since

the available data do not permit a measurement of the total width ΓH , in general it is not possible to
directly determine scale factors κi, but one is limited to determining ratios of scale factors of the
form κiκj/κH . If one assumes that no BSM Higgs decay modes contribute to the total width and
using the approximations mentioned above for the currently undetectable SM modes, one can relate
κH to the other scale factors as given in eq. (1.146), which makes an absolute determination of the
κi possible (a milder assumption that also allows to constrain the total width is to assume κW ≤ 1
and κZ ≤ 1 [47, 162]).

For the experimental analyses up to now often benchmark parameterizations with two free
parameters have been used. In particular, a parameterization in terms of a common scale factor
for the couplings to fermions, κF , and a common scale factor for the couplings to W and Z, κV ,
has been considered, where κF = κt = κb = κτ and κV = κW = κZ . Besides assuming that all
couplings to fermions and the couplings to W and Z can be scaled with a universal factor, in this
case it is furthermore assumed that contributions of BSM particles to the loop-induced processes are
absent and that the contributions to the total width can be approximated according to eq. (1.146).
The most general parameterization that has been investigated up to now involves the parameters
κV , κt, κb, κτ , κg, κγ [23].
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1.6 Alternative approaches to electroweak symmetry breaking dynamics

In the Standard Model, electroweak symmetry is broken by perturbative scalar dynamics. The scalar
potential exhibits a minimum at a non-zero value for the neutral component of a hypercharge one,
complex doublet of scalar fields. The scalar fields are elementary (not composite) degrees of freedom,
at least at energy scales of order 1 TeV and below. In all extensions of the Higgs sector discussed
previously in this document, the elementarity of the scalar fields is maintained and the weakly-coupled
nature of the scalar dynamics is preserved.

The Standard Model cannot be a fundamental theory of elementary particle interactions to
arbitrarily high energy scales. At Planck scale energies (MPL ' 1019 GeV), gravitational phenomena
at the microscopic scale can no longer be neglected. Indeed, other new scales of fundamental physics
may exist between the scale of electroweak symmetry breaking (EWSB) of order v = 174 GeV and the
Planck scale, e.g. the grand unification scale, the seesaw scale (that governs right-handed neutrinos
and is responsible for generating mass for the light neutrinos) and the mass scale associated with
dark matter.

In the Standard Model, the scale of EWSB is not protected by any known symmetry. Thus, it is
deeply puzzling how the EWSB scale can be stable with respect to the Planck scale (and other high
energy scales if they exist). An equivalent statement is that there is no mechanism in the Standard
Model that can keep the mass of an elementary scalar field much lighter than the highest fundamental
mass scale of the theory, Λ. That is, the natural value for the squared-mass of the scalar is [163]

m2
h ∼

g2

16π2 Λ2 , (1.147)

where g is the coupling of the scalar to other sectors of the theory. That is, the scale of EWSB and
the attendant Higgs mass is extremely unnatural if Λ� O(1 TeV). Only if Λ ∼ 1 TeV do we have a
chance of providing a natural mechanism for the EWSB dynamics [164].

The quest for a natural theory of EWSB is one of the motivations for TeV-scale supersymme-
try [165, 166, 167, 168, 169, 170]. In this framework, elementary scalars are related by supersymmetry
to elementary fermionic superpartners. The fermion masses can be naturally small due to weakly
broken chiral symmetries, which in turn protects the masses of the scalar partners. In theories of
TeV-scale supersymmetry, we identify Λ with the scale of supersymmetry breaking. Ideally, this scale
should be no larger than of O(1 TeV). The fact that supersymmetry has not yet been discovered at
the LHC provides some tension for natural EWSB in the supersymmetric framework. A pedagogical
review of alternative EWSB scenarios can be found in Ref. [171]. In this section, we shall briefly
consider non-supersymmetric approaches that could provide a natural explanation for EWSB dynamics.

One of the first leading contenders for a natural theory of EWSB dynamics was technicolor.
(Reviews and references can be found in Refs. [172, 173, 174]. In this approach, EWSB was generated
by the condensation of bilinears of new fermion fields. No elementary scalar fields were needed,
and the naturalness problem associated with them was avoided. Unfortunately, this approach was
ultimately unsuccessful. Apart from the fact that it was very difficult to generate a realistic fermion
mass spectrum (which required additional new dynamics beyond the introduction of technicolor and
the associated techniquarks), the constraints of the precision electroweak observables were extremely
difficult to accommodate. The discovery of Higgs boson with Standard Model like properties may have
provided the final nail in the coffin (although not all technicolor proponents have conceded [175, 176]).
Any theory of EWSB dynamics must explain the presence of a weakly-coupled SM-like Higgs boson
whose mass is considerably smaller than O(1 TeV).
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1.6.1 The Higgs boson as a pseudo-Goldstone boson

Apart from supersymmetry, there is a known mechanism that can yield naturally light elementary
scalars. When a continuous global symmetry is broken, one of the consequences is an exactly massless
Goldstone boson. If this global symmetry is now explicitly broken, the would-be Goldstone boson
acquires a mass proportional to the strength of the symmetry breaking. This is a mechanism for
producing naturally light scalars—pseudo-Goldstone bosons whose masses are generated by small
symmetry-breaking effects [177].

Thus, perhaps the Higgs boson is in fact a pseudo-Goldstone boson (PGB) generated by strong
dynamics associated with scale of new physics Λ [178, 179]. Even though the tree-level mass of
the PGB can be significantly smaller that Λ, one-loop corrections to the PGB squared-mass due
to the new physics at the scale Λ will still be quadratically sensitive to Λ. This would imply that
Λ ∼ O(1 TeV), which is in conflict with precision electroweak observables that do no show any sign
of strongly-coupled new physics effects at a mass scale of order 1 TeV.

By a clever construction, one can overcome this last objection by arranging to have the quadratic
sensitivity at one loop ameliorated by a cancellation of contributions to the one-loop radiative
corrections. The quadratic sensitivity will persist at two-loops, but the presence of the extra loop
factor would imply that Λ ∼ O(10 TeV), which is no longer in conflict with precision electroweak
observables. This is precisely the mechanism employed by the little Higgs Models [180]. In this
framework, the Higgs boson is a PGB associated with the explicit breaking of some global symmetry
But in this case, the global symmetry becomes exact when two different interactions separately vanish
(this phenomenon is known as collective symmetry breaking). That is, the lightness of the Higgs boson
mass is doubly protected. Indeed, at one loop the quadratic sensitivity of the Higgs squared-mass
to Λ vanishes due to the cancellation between Standard Model particles and partner particles of the
same spin (in contrast to supersymmetry where the cancellation is due to partners that differ by a
half a unit of spin). For example, the top quark must be accompanied by new fermionic top partners
whose masses should be of order 1 TeV. Likewise, such models typically include additional gauge
bosons, which are partners of the W± and Z.

Numerous realizations of little Higgs models can be found in the literature [181, 182, 183]. The
challenge of precision electroweak observables is still present but can be overcome by introducing a
discrete T -parity [184, 185] (whose consequences are similar to that of R-parity in supersymmetry
models). The presence of new physics (such as top partners and new gauge bosons) can modify the
properties of the 126 GeV Higgs boson and provide additional constraints on model building.

An alternative approach for constructing Higgs bosons as PGBs arises in composite models of
Higgs bosons [178, 179]. A pedagogical review of the recent progress in developing realistic models of
this type can be found in Ref. [186]. Such models often arise as low-energy effective theories of models
constructed in higher dimensions of spacetime, where the Higgs boson degree of freedom is identified
as the fifth component of a five-dimensional gauge field. (A recent review of this mechanism, called
gauge-Higgs unification, can be found in Ref. [187].) In this approach, f ∼ O(1 TeV) characterizes
the scale of new strong interactions that produce the PGB when some larger global symmetry (in
which the Standard Model gauge group is embedded) is broken. The effective cutoff of the theory is
Λ ∼ 4πf ∼ 10 TeV. The natural value for the Higgs mass is a few hundred GeV, so some amount
of tuning is required to identify the Higgs boson of these models with the 126 GeV Higgs boson.
Typically, deviations from SM Higgs properties are expected at the 10% level or higher due to the
composite nature of the Higgs state. Moreover, such approaches typically predict the existence of
other composite resonant states with masses below 1 TeV, which can be searched for at the LHC [188].
These class of models are best studied using the effective Lagrangian analysis of Section 1.5.1.
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1.6.2 The Higgs boson as a dilaton

A massless scalar can also arise due to the spontaneous breaking of conformal symmetry. In this case,
the corresponding massless Goldstone boson is called a dilaton. If there is a small explicit breaking
of conformal symmetry, the corresponding dilaton will be light. So perhaps the Higgs boson can be
identified as the dilaton of a broken conformal symmetry. Indeed, if one sets the Higgs potential of the
Standard Model to zero, then the Standard Model is classically scale invariant. The Higgs field can
take on any value (without costing energy at the classical level). If the Higgs field assumes a nonzero
value, then both the electroweak symmetry and the conformal invariance is broken. In this case, the
Higgs boson is identified as the dilaton of spontaneously broken conformal symmetry. (In practice,
the resulting Higgs boson is not massless due to quantum effects that break the conformal symmetry
due to the conformal anomaly.) Models of this type have been recently reviewed in Ref. [189].

It is not clear whether a theoretically consistent model of this type exists. One would have to
demonstrate that given a model with spontaneously broken conformal symmetry with a flat direction
for the dilaton, a suitable weak explicit breaking of that symmetry can be introduced that picks out
a unique vacuum and generates a small mass for the dilaton. Identifying the breaking scale f with
the scale of EWSB v, it then follows that the leading couplings of the dilaton to SM fermions is
mf/v and to SM bosons is m2

b/v which matches precisely with the couplings of the SM Higgs boson.
However, there could be corrections to the one-loop couplings of the dilaton to gluons and photons
that depend in a model-independent way on the details of the conformal sector, which would yield
deviations from the expected one-loop couplings of the SM Higgs boson [190]. The most significant
difference between a SM Higgs boson and a dilaton Higgs boson would be found in the triple and
quartic Higgs self-couplings. All these deviations can be parameterized via the effective Lagrangian
treatment of Section 1.5.1.

In models where f 6= v, the dilaton is a scalar distinct from the Higgs boson. This would yield a
phenomenology quite distinctive from that of a typical extended Higgs sector [191]. However, such
an approach would not provide any fundamental understanding of how the SM Higgs boson mass
remains significantly smaller than the higher energy scale that define this theory.

1.7 Probing the properties of the signal at 126 GeV

After the spectacular discovery of a signal at 126 GeV in the Higgs searches at the LHC [19, 20], it is
critically important to determine the properties of the new state as comprehensively and as accurately
as possible. This information will provide crucial input for identifying the nature of the electroweak
symmetry-breaking mechanism.

1.7.1 Present status and prospects for the upcoming LHC runs

We briefly discuss here the present status and the prospects for the upcoming LHC runs. We keep
this discussion at a rather qualitative level. For a more quantitative treatment we refer to the latest
results from ATLAS and CMS (see in particular [21, 22, 23, 24] and references therein) and the future
projections that have been made under various assumptions.

The determination of the mass of the new particle is already at the level of a precision measurement
with the 2012 data, driven by the γγ and ZZ∗ → 4` channels. The accuracy will further improve
with increasing statistics, requiring however a careful treatment of systematic effects.

Concerning the spin of the discovered particle, the observation in the γγ channel rules out the
possibility of a J = 1 state as a consequence of the Landau–Yang theorem [192, 193]. It should be
mentioned that there are two caveats to this argument. First, the Landau–Yang theorem strictly
applies to an on shell resonance, so that the J = 1 hypothesis can be excluded only by making an
additional small-width assumption [194]. Second, the decay product could in principle consist of
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two pairs of boosted photons each misinterpreted as a single photon. Nevertheless, assuming that
the discovered state corresponds to a single resonance rather than to several overlapping resonances
corresponding to different spin states, the spin of the discovered particle can be determined by
discriminating between the distinct hypotheses for spin 0, (1), 2 states. Some care is necessary in
modeling possible incarnations of the spin 2 hypothesis in order to make sure that the discriminating
power of the analysis actually refers to the spin properties rather than to some unphysical behavior of
the spin 2 implementation. The experimental results obtained up to now are well compatible with the
spin 0 hypothesis [22, 24], and there is growing evidence against the alternative hypotheses.

The determination of the CP properties of the observed state is a much more difficult task, since
the observed state could in principle consist of any admixture of CP-even and CP-odd components.
The analyses so far are mainly based on observables involving the coupling of the new state to two
gauge bosons, HV V , where V = W,Z, in particular H → ZZ∗ → 4`. The angular and kinematic
distributions in these processes will only provide sensitivity for a discrimination between CP-even and
CP-odd properties if a possible CP-odd component A of the new state couples with sufficient strength
to WW and ZZ. However, in many models of physics beyond the SM there is no lowest-order
coupling between a pseudoscalar A and a pair of gauge bosons, so that the AV V coupling is strongly
suppressed compared to the coupling of the CP-even component. In this case, the angular and
kinematic distributions will show essentially no deviations from the expectations of a pure CP-even
state, even if the state had a sizable CP-odd component. The difference between a pure CP-even
state and a state that is a mixture of CP-even and CP-odd components would rather manifest itself
as a reduction of the total rate. However, such a reduction in rate could be caused by other effects
(and there could even be a compensation with other contributions leading to an enhancement of the
rate). The couplings of the Higgs boson to fermions offer a more democratic test of its CP nature,
since in this case the CP-even and odd components can have the same magnitude.

Using the results of the H → ZZ∗ → 4` channel to discriminate between the distinct hypotheses
of a pure CP-even and a pure CP-odd state has led to a growing evidence against the pure CP-odd
hypothesis. Furthermore, first results of more general analyses that take into account the possibility
of a CP-admixture have been obtained. As explained above, in the channels involving the HV V
coupling the effects of even a large CP-admixture can be heavily suppressed as a consequence of a
small coupling of the CP-odd component to gauge bosons.

Concerning the determination of the couplings and the total width of the observed particle,
a modification of a coupling will give rise to a change in the tensor structure and thus in the CP
properties. The determination of coupling and CP properties are therefore closely related. For the
analysis of the data taken at the LHC so far, an “interim framework” (described in Section 1.5.2) has
been introduced for determining coupling properties. In this framework, it is assumed that only the
overall coupling strength gets modified while the tensor structure of the different couplings is the
same as in the SM. In this way, results for scale factors κi (or, with fewer assumptions, ratios of scale
factors) have been obtained under certain assumptions, as discussed in Section 1.5.2. At the present
level of accuracy, these analyses do not show a significant deviation from the SM predictions (the
SM case corresponds to κi = 1 for all scale factors). Projections for future accuracies of the scale
factors κi have also been discussed. The reported projections [195] should be interpreted with some
care given the fact that one of the goals of the analyses during the next run of the LHC will be to
go beyond the “interim framework” used for the definition of the κi in order to obtain more general
results with less theoretical assumptions (see Section 1.5.1).

The self-coupling HHH will be very difficult to access at the LHC, even with the integrated
luminosities obtainable at the high-luminosity upgraded LHC. The prospects are even worse for the
quartic self-coupling HHHH.
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The total decay width for a light Higgs boson with a mass in the observed range is not expected
to be directly observable at the LHC. The predicted total width of the Standard Model Higgs boson is
about 4 MeV, which is several orders of magnitude smaller than the LHC experimental mass resolution.
Furthermore, as all LHC channels rely on the identification of Higgs decay products, the total Higgs
width cannot be measured in those analyses without additional assumptions. More sensitive constraints
on the total width than the ones limited by the experimental mass resolution can be expected from
the analysis of interference effects between signal an background [196, 197, 198, 199, 200]. The
limited access to the total width at the LHC implies that without further assumptions only ratios of
couplings can be determined rather than the absolute values of the couplings.

In summary, while the experimental information obtained so far about the signal at 126 GeV is
compatible with the expectations for the Higgs boson of the SM, a large variety of other interpretations
of the discovered particle is also possible, corresponding to very different underlying physics. Some
scenarios of this kind have been discussed in the previous sections. These include the possibility that
the observed state is composite or that it is an admixture or shares properties with other scalar states
of new physics. Extended Higgs sectors are an simplest alternatives to the SM Higgs boson. In this
context the signal at 126 GeV can be interpreted as the lightest state of an extended Higgs sector,
but interpretations involving at least one lighter Higgs state below 126 GeV, having significantly
suppressed couplings to gauge bosons as compared to the SM case, are also possible. The sensitivity
for discriminating among the different possible interpretations correlates with the achievable precision
in confronting the experimental results with the theory predictions.

1.7.2 Experimental precision required to discriminate between different possible interpretations

If the observed signal at about 126 GeV is interpreted as the lightest state of an extended Higgs
sector, this interpretation typically refers to the decoupling region of the respective model, where the
lightest state has SM-like properties, while the heavier Higgs states decouple from the gauge bosons
of the SM. A concrete example of this kind is the MSSM, where solely from the measured mass value
of about 126 GeV important constraints can be inferred if the signal is interpreted in terms of the
light CP-even Higgs boson h. Requiring the prediction for the mass of the light CP-even Higgs boson,
mh, to be compatible with the measured mass value of about 126 GeV leads to a lower bound of
about 200 GeV on the mass of the CP-odd Higgs boson, mA, if the masses of the superpartners
are in the TeV range [201]. The value of mA is therefore much larger than mZ in this case, which
corresponds to the decoupling region of the MSSM. This implies that the properties of the state at
126 GeV are expected to be SM-like, and that one generically would not have expected any deviations
from SM-like properties in the LHC measurements of the new resonance carried out so far.

In the actual decoupling limit, the couplings of the light Higgs state to SM particles are exactly
the same as for the SM Higgs. Of course, even if the couplings to SM particles were very close to
the SM values, there could still be deviations from the SM predictions in the branching ratios and
the total width if there is a significant branching ratio into invisible BSM particles. The deviations
of the Higgs couplings from the SM limit depend on the mass scale of the new physics. In general
2HDM-type models (including the case of the MSSM) one typically expects deviations from the SM
predictions at the percent level for BSM particles in the TeV range. In this context, one expects the
largest deviations to occur in the couplings to fermions that get their mass from the Higgs doublet
with the smaller vacuum expectation value. For example, within the MSSM this refers in particular
to the couplings to bb̄ and τ+τ−) [2, 126]. The couplings to W and Z are usually less affected
by deviations from the decoupling limit. This can be illustrated in a general 2HDM by the feature
that the deviation of the HV V coupling (V = W,Z) from its SM values behaves quadratically in
an expansion of the deviation term, while the couplings to fermions behave linearly, as discussed
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in Section 1.3.5. The loop-induced couplings Hγγ and Hgg can be significantly affected by the
presence of relatively light BSM particles in the loops. See Refs. [2, 202] for a discussion of other
electroweak symmetry breaking scenarios.

Examples of the coupling patterns in specific models are discussed in the following section.

1.7.3 Examples of analyses in different models

The decays of the Higgs bosons in the 2HDM depend on the Type of Yukawa interactions. In the
decoupling/alignment limit where sin(β −α) = 1, all the tree-level couplings of h coincide with those
in the SM, as discussed in Section 1.3.5. However at the loop level, the effects of the additional
Higgs bosons H, A and H± can generate deviations in the h couplings from the SM predictions in
the alignment limit if the masses of the additional Higgs boson are not significantly heavier than
the mass of the external particles. When sin(β − α) is slightly smaller than 1, the couplings of h
to various SM particles can differ from the SM predictions by mixing effects in addition to the loop
corrections due to extra fields. The gauge couplings hV V (V V = WW and ZZ) are modified by
the factor sin(β − α) relative to the SM values, and Yukawa interactions of h differ from the SM
predictions by the factors given in Table 1.9. The pattern of deviation in Yukawa couplings strongly
depends on the Type of Yukawa Interactions in the 2HDM. Therefore, we can basically separate the
type of an extended Higgs sector by precision measurements of the couplings of h at the ILC.

For example, we discuss here the deviations from the SM of the Yukawa couplings of h in 2HDMs
with a softly broken Z2 discrete symmetry, which is imposed to avoid tree-level Higgs-mediated flavor
changing neutral currents. The Yukawa interactions of the SM-like Higgs boson (h) are given by

L2HDM
yukawa =−

∑
f

mf

v
ξfhffh, (1.148)

where the scaling factors ξfh are displayed in Table.1.9. The scaling parameters for the gauge couplings
to h are given by κV = sin(β − α), while those for the Yukawa interactions are given by κf = ξfh
for f = u, d, `. The pattern in deviations for each coupling is different among the various Types of
Yukawa interactions.

In Fig. 1.17, the scale factors κf = ξfh in the 2HDM with a softly broken Z2 symmetry are
plotted on the κ`-κd plane and the κ`-κu plane as a function of tan β and κV = sin(β − α) with
cos(β − α) ≤ 0. The points and the dashed curves denote changes of tan β by steps of one. The
scaling factor κV for the Higgs-gauge-gauge couplings is taken to be κ2

V = 0.99, 0.95 and 0.90. For
κV = 1, all the scaling factors for the couplings of h to SM particles become unity. In Fig. 1.17, the
current LHC constraints and the expected LHC and ILC sensitivities for κd and κ` at 68.27 % C.L.
are also shown. For the current LHC constraints (LHC30), we take the numbers from the universal fit
in Eq. (18) of Ref. [203],

εb = −0.23± 0.31, ετ = +0.00± 0.19, ρ =
(

1 0.45
0.45 1

)
(1.149)

where κx = 1 + εx. Those including εt are not provided in Ref. [203], because the uncertainties are
much larger than unity. For the future LHC sensitivities (LHC300 and LHC3000), the expectation
numbers are taken from the Scenario 1 in Table. 1 of Ref. [204]. The central values and the
correlations are assumed to be the same as in LHC30 (although in practice, the correlations would
change at a collision energy of √s = 14 TeV). The ILC sensitivities are based on the numbers in
Table. 2.6 in Ref. [2]. The same central values and no correlation are assumed for the plots of ILC
sensitivity curves. Therefore, by precisely measuring the couplings of h at the ILC, one can detect
deviations from the SM. Those deviations can then be used to discriminate among the various types
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Figure 1.17. The deviation in κf = ξf
h

in the 2HDM with Type I, II, X and Y Yukawa interactions are plotted as a
function of tanβ = v2/v1 and κV = sin(β−α) with cos(β−α) ≤ 0. For the sake of clarity of illustration, several lines
with κx = κy are shifted slightly so as to be separately visible. The points and the dashed curves denote changes of
tanβ by one steps. The scaling factor for the Higgs-gauge-gauge couplings is taken to be κ2

V = 0.99, 0.95 and 0.90.
For κV = 1, all the scaling factors with SM particles become unity. The current LHC constraints, expected LHC and
ILC sensitivities on (left) κd and κ` and (right) κu and κ` are added.

of extended Higgs sectors by fingerprinting predictions in each model with the precision data of the h
coupling measurement.

The behavior of the scaling factors depends on the structure of the extended Higgs sector. For
example, a model with mixing of the SM-like Higgs boson with a singlet Higgs field predicts a universal
suppression of the SM-like Higgs couplings, κF = κV = cosα, where α is the mixing angle between
the doublet field and the singlet field. In contrast, κF 6= κV in more complicated extended Higgs
models such as the 2HDM, the Georgi-Machacek model [141] and doublet-septet model [143, 144].
The scaling factors for these models are summarized in Table. 1.13 . Note that in exotic models
with higher representation scalar fields such as the Georgi-Machacek model and doublet-septet model,
κV can be greater than 1 as already discussed in Section 1.4.2, which is the clear signature of these
exotic Higgs sectors.

Table 1.13. Scaling factors in models with universal Yukawa coupling constants.

Doublet-Singlet 2HDM-I Georgi-Machacek Doublet-Septet
tanβ — v2/v′2 v2/(2

√
2 v3) v2/(4 v7)

ξf
h

cα
cα
sβ

cα
sβ

cα
sβ

ξVh cα sβ−α(= sβcα − cβsα) sβcα − 2
√

6
3 cβsα sβcα − 4cβsα

In Fig. 1.18, the predictions for the scale factors of the universal Yukawa coupling κF and the
gauge coupling κV are plotted in the doublet-singlet model, the Type-I 2HDM, the Georgi-Machacek
model and the doublet-septet model for each set of tan β and α. The current LHC constraints,
expected LHC and ILC sensitivities for κF and κV at 68.27 % C.L. are also shown. By precision
measurements of κV and κF one can discriminate among exotic models. The central values of
the contours correspond to the the SM prediction. For the contours for LHC 300 and LHC 3000,
κτ is used for the scaling factor of the Yukawa coupling, which exhibits the best sensitivity among
the fermionic channels. For the contours for ILC250 and ILC500, the scaling factors are chosen as
(κV , κF ) = (κZ , κb) without making combinations.

When κV is slightly different from unity, we can obtain the upper bound on the mass scale of
the second Higgs boson. Extended Higgs sectors usually contain additional mass parameters which
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Figure 1.18. The scaling factors in models with universal Yukawa couplings.

are irrelevant to electroweak symmetry breaking. The mass of the second Higgs boson then is a free
parameter and can be taken to be very heavy, so that all the couplings of the lightest Higgs boson h
coincide with the SM value at tree level. Although we cannot predict the mass of the second Higgs
boson, when the coupling hV V is slightly different from the SM prediction, the upper bound on the
heavy Higgs mass scale can be theoretically obtained as a function of κV by using the properties of
the SM-like Higgs boson and the constraint from vacuum stability and perturbative unitarity.

In the case of the 2HDM with a softly-broken discrete Z2 symmetry, the vacuum stability bound
is given by [108]

λ1 > 0 , λ2 > 0 ,
√
λ1λ2 + λ3 + min

{
0 , λ4 + λ5 , λ4 − λ5

}
> 0. (1.150)

The unitarity bounds are obtained by imposing the conditions, |xi| < 1
2 , where the xi are the

eigenvalues of the s-wave amplitude matrix for the elastic scattering of two scalar states. They are
calculated in Ref. [205],

x±1 = 1
16π

[
3
2 (λ1 + λ2)±

√
9
4 (λ1 − λ2)2 + (2λ3 + λ4)2

]
, (1.151)

x±2 = 1
16π

[
1
2 (λ1 + λ2)±

√
1
4 (λ1 − λ2)2 + λ2

4

]
, (1.152)

x±3 = 1
16π

[
1
2 (λ1 + λ2)±

√
1
4 (λ1 − λ2)2 + λ2

5

]
, (1.153)

x4 = 1
16π (λ3 + 2λ4 − 3λ5), x5 = 1

16π (λ3 − λ5), (1.154)

x6 = 1
16π (λ3 + 2λ4 + 3λ5), x7 = 1

16π (λ3 + λ5), x8 = 1
16π (λ3 + λ4). (1.155)

In Fig. 1.19, an upper limit on the mass of the second lightest Higgs boson is shown in the
2HDM with a softly broken Z2 discrete symmetry. Regions on the left side of each curve are the
allowed regions by the constraints from unitarity and vacuum stability in the (M , κ2

V ) plane for each
fixed value of tan β. We take M = mA = mH = mH+ . If the equality of the heavier Higgs masses
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Figure 1.20. Regions below the curves are allowed by the constraints from unitarity and vacuum stability in the
(tanβ , mA) plane for each fixed value of κ2

V for M = mA = mH = mH+ in the Type II and Type X 2HDMs.
Expected excluded areas of the parameter space are also shown by blue (orange) shaded regions from the gluon
fusion production and associate production of A and H with bottom quarks and tau leptons at the LHC with the
collision energy to be 14 TeV with an integrated luminosity of 300 fb−1 (3000 fb−1).

is relaxed, then the bound on the mass of the second lightest Higgs boson is typically stronger. The
solid and dashed curves correspond to the boundaries of the exclusion regions due to vacuum stability
and unitarity, respectively.

In Fig. 1.20, the upper bound on the mass scale of the additional Higgs bosons are shown as
a function of tan β for each fixed value of κ2

V = sin2(β − α) under the constraints of perturbative
unitarity and vacuum stability [108, 205]. The expected discovery regions at LHC with 300 fb−1 and
3000 fb−1 are also shown assuming a Type-II Yukawa interaction and a Type-X Yukawa interaction.
These discovery regions are obtained from the analysis of the tau lepton decay of H and A from
gluon fusion production processes and associate production processes with the bottom quarks and
tau leptons,

gg → φ0 → τ+τ−, (1.156)
gg → bb̄φ0 → bb̄τ+τ−, (1.157)
gg → τ+τ−φ0 → τ+τ−τ+τ−, (1.158)

where φ0 represents H or A. The cross section is obtained by rescaling the values of gluon fusion
cross section for hSM at 14 TeV from Ref. [206], and the signal and background analysis in the MSSM
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given in Ref. [207] is used. The signal significance S is computed by rescaling the results to the case
of the 2HDMs, and the expected excluded regions are obtained by requiring that S > 2.

For moderate values of tan β, it may not be possible to detect the second lightest Higgs boson
of the 2HDM at the LHC. In this case, it is important to determine the mass scale of the second
Higgs boson in an indirect way. For example, it is possible to measure κV at the ILC with a precision
at the one percent level or better. If κV is found to be slightly different from unity at the ILC at the
percent level, then the upper bound on the heavy Higgs mass scale can be obtained from perturbative
unitarity. If the deviation is a few percent, these upper bounds are above the discovery reach at LHC
with 300 fb−1 in wide region of tan β in both Type-II and Type-X 2HDMs. At the LHC with 3000
fb−1, regions with relatively large tan β can be surveyed. The ILC with a center-of-mass energy of
1 TeV can directly survey the extra Higgs bosons with masses less than 500 GeV for relatively low
tan β regions, where the LHC cannot detect them.

1.7.4 The hhh coupling and electroweak baryogenesis

How accurately we should measure the hhh coupling?
Given a sufficient accuracy of the hhh coupling measurement, one can test certain scenarios of

electroweak baryogenesis. The matter anti-matter asymmetry in our Universe cannot be explained
within the Standard Model of particle physics. In particular, the baryon-to-photon ratio is given by
nb/nγ ' (5.1—6.5) × 10−10 at 95 % CL [208], where nb is the difference in the number density
between baryons and anti-baryons and nγ is the photon number density. In order to generate the
baryon asymmetry from a baryon number symmetric initial state, three conditions first given by
Sakharov must be satisfied [209]. The electroweak gauge theory can satisfy these conditions by
employing sphaleron processes at high temperatures, C and CP violation in the theory and the strongly
first order phase transition of the electroweak symmetry. The mechanism of baryogenesis using such
a scenario is called electroweak baryogenesis [44, 45, 210], which directly relates to the Higgs sector.
Electroweak baryogenesis is especially attractive because of its testability at collider experiments.

In the SM, this scenario is already excluded by the data [44, 45]. The simplest viable model is
the 2HDM [211], which provides additional CP violating phases and a sufficiently strong first order
electroweak phase transition compatible with the 126 GeV SM-like Higgs boson due to the loop effect
of the extra Higgs bosons. One of the interesting phenomenological predictions for such a scenario is
a large deviation in the triple Higgs boson coupling [46, 212]. The requirement of a sufficiently strong
first order phase transition results in a large deviation in the triple Higgs boson coupling as seen in
Fig. 1.21. This suggests that the electroweak baryogenesis scenario can be tested by measuring the
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Figure 1.21. The region of strong first order phase transition (ϕc/Tc > 1) required for successful electroweak baryo-
genesis and the contour plot of the deviation in the triple Higgs boson coupling from the SM prediction [46], where
mΦ represents the common mass of H, A and H± and M is the soft-breaking mass of the Z2 discrete symmetry in
the Higgs potential.
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hhh coupling with a 10% accuracy.
An analysis of the first order phase transition has also been performed in Ref. [212] using a

simple Higgs potential with higher order operators where similar deviations in the hhh coupling are
predicted. Moreover, the correlation between the condition of strong first order phase transition and
the deviation in the hhh coupling from the SM prediction can be seen in various extended Higgs
models [213, 214]. Therefore, measuring the hhh coupling accurately is a useful probe of the class of
models of electroweak baryogenesis.

The measurement of the hhh coupling for mh ' 126 GeV is very challenging at the LHC and
even at the high luminosity upgrade of the LHC. At the ILC, the hhh coupling can be measured via
e+e− → Zhh and e+e− → hhνν̄. As indicated in Chapter 9, for the combined data taken at the
ILC with √s = 250 with 1150 fb−1 and 500 GeV with 1600 fb−1, the hhh coupling can be measured
with an accuracy of about 46%. By adding additional data from a run of √s = 1 TeV with 2500
fb−1, one can determine the hhh coupling to an accuracy of about 13%. Therefore, the scenario for
electroweak baryogenesis would be testable by measuring the triple Higgs boson coupling at the ILC.

1.7.5 Value added by the ILC Higgs program post-LHC

What will be the value added by the ILC Higgs program in the context of the current and future
results from the LHC? We provide a qualitative assessment of this question in this section.

The ILC will provide crucial information for identifying the underlying nature of electroweak
symmetry breaking. In particular, high-precision measurements of the properties of the signal observed
at 126 GeV will be performed at the ILC. For example, for the Higgs couplings to gauge bosons
and fermions, one typically expects an order of magnitude improvement from the ILC measurements
as compared to the ultimate LHC precision. This expected accuracy provides a high sensitivity for
discriminating among possible realizations of electroweak symmetry breaking, such as effects of an
extended Higgs sector, of additional states of new physics or deviations in the couplings from the
respective SM values that would occur in case the observed signal is a composite state.

Besides those quantitative improvements, the ILC Higgs program will also give rise to crucial
qualitative improvements in studying the properties of the observed signal. In particular, the Hig-
gsstrahlung process e+e− → ZH provides the unique opportunity to make absolute measurements of
Higgs couplings in a model-independent way. The clean experimental environment and the relatively
low SM cross sections for background processes allow e+e− → ZH events to be selected based on
the identification of two oppositely charged leptons with invariant mass consistent with mZ . The
remainder of the event, i.e. the Higgs decay, is not considered in the event selection.

Because only the properties of the dilepton system are used in the selection, this decay-mode
independent measurement provides an absolute determination of the Higgsstrahlung cross section.
Subsequently, by identifying the individual final states for different Higgs and Z decay modes, absolute
measurements of the Higgs boson branching fractions can be made. Moreover, the ILC provides a
unique sensitivity to invisible decay modes of the observed signal. If dark matter consists of a particle
(or more than one) with a mass that is less than half the mass of the observed signal, there could be
a significant branching ratio of the discovered state at 126 GeV into a pair of dark matter particles. If
an invisible decay mode is detected, this could be the first hint for the production of dark matter in
collider experiments.

Furthermore, the absolute measurements of the Higgs boson branching ratios imply that the
ILC can provide an absolute measurement of the total width a model-independent way. This can be
accomplished using the relationship between the total and partial decay widths, for example

ΓH = Γ(H →WW ∗)
BR(H →WW ∗) , (1.159)
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where ΓH denotes the total width. The partial width Γ(H → WW ∗) can be determined from
the measurement of the HWW coupling obtained from the fusion process e+e− → Hνν̄. When
combined with the direct measurement of BR(H →WW ∗), the total Higgs width can be inferred.

The measurement of the Higgs trilinear self-coupling is of particular importance, since it provides
direct access to the form of the Higgs potential that gives rise to electroweak symmetry breaking. This
measurement is therefore crucial for experimentally establishing the scalar dynamics of electroweak
symmetry breaking. As mentioned above, the measurement of the Higgs trilinear self-coupling will
be extremely challenging at the LHC even with 3000 fb−1 of data. This is due to the complexity of
the final state and the smallness of the cross sections. At the ILC the processes e+e− → ZHH and
e+e− → HHνν̄ provide sensitivity to the trilinear self-coupling given sufficiently high luminosity.

Besides a high-precision determination of the properties of the observed signal at 126 GeV, the
ILC has also a high physics potential in the direct search for additional states of an extended Higgs
sector. The search capacity of the ILC for the pair production of heavy Higgs states is expected to be
close to the kinematic limit of 1

2
√
s. An extended Higgs sector could however also contain at least

one state that is lighter than 126 GeV with significantly suppressed couplings to gauge bosons as
compared to the case of a SM-like Higgs. The search for such a light Higgs state in the mass range
between 60 GeV and 100 GeV is very challenging in the standard search channels at the LHC. In
contrast, at the ILC there will be a high sensitivity for probing scenarios of this kind.
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Chapter 2
ILC Accelerator Parameters and
Detector Concepts

2.1 ILC Accelerator Parameters

2.1.1 TDR Baseline ILC 250 - 500 GeV

The International Linear Collider (ILC) is a high-luminosity linear electron-positron collider based on
1.3 GHz superconducting radio-frequency (SCRF) accelerating technology. Its center-of-mass-energy
range is 200–500 GeV (extendable to 1 TeV). A schematic view of the accelerator complex, indicating
the location of the major sub-systems, is shown in Fig. 2.1:

Figure 2.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale).

• a polarized electron source based on a photocathode DC gun;

• a polarized positron source in which positrons are obtained from electron-positron pairs by
converting high-energy photons produced by passing the high-energy main electron beam
through an undulator;

• 5 GeV electron and positron damping rings (DR) with a circumference of 3.2 km, housed in a
common tunnel;

• beam transport from the damping rings to the main linacs, followed by a two-stage bunch-
compressor system prior to injection into the main linac;

• two 11 km main linacs, utilizing 1.3 GHz SCRF cavities operating at an average gradient of
31.5 MV/m, with a pulse length of 1.6 ms;
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• two beam-delivery systems, each 2.2 km long, which bring the beams into collision with a
14 mrad crossing angle, at a single interaction point which can be occupied by two detectors in
a so-called “push-pull” configuration.

The total footprint of the ILC complex is ∼ 31 km long. The electron source, positron source
(including an independent low-powered auxiliary source), and the electron and positron damping rings
are centrally located around the interaction region (IR) in the Central Region. The damping-ring
complex is displaced laterally to avoid interference with the detector hall. The electron and positron
sources themselves are housed in the same (main accelerator) tunnels as the beam-delivery systems,
which reduces the overall cost and size of the central-region underground construction.

The top-level parameters for the baseline operational range of center-of-mass energies from 250
to 1000 GeV were set in close discussion with the physics community that will exploit the ILC. The
baseline performance requirements thus obtained have been optimized with respect to cost, physics
performance and risk. All have been either directly demonstrated, or represent justifiable extrapolations
from the current state of the art. Table 2.1 shows the parameters for several center-of-mass energies,
including possible upgrades and staging.

The parameters in Table 2.1 represent relatively conservative operating points resulting from
optimization subject to the constraints imposed by the various accelerator sub-systems. For example,
the bunch charge, bunch spacing and the total number of bunches in the damping rings are limited by
various instability thresholds (most notably the electron cloud in the positron ring), realistic rise-times
for the injection and extraction kickers, and the desire to minimize the circumference of the rings.
Secondly, the maximum length of the beam pulse is constrained to ∼ 1.6 ms, which is routinely
achieved in the available 1.3 GHz 10 MW multi-beam klystrons and modulators. The beam current is
further constrained by the need to minimize the number of klystrons (peak power) and higher-order
modes (cryogenic load and beam dynamics). Dynamic cryogenic load (refrigeration) is also a cost
driver, which limits the repetition rate of the machine. Thirdly, both the electron and positron sources
constrain the achievable beam current and total charge: For the laser-driven photocathode polarized
electron source, the limits are set by the laser; for the undulator-based positron source, the limits are
set by the power deposition in the photon target. The beam pulse length is further constrained by the
achievable performance of the warm RF capture sections (both sources). Finally, at the interaction
point, single-bunch parameters are limited by the strong beam-beam effects and requirements on
both the beam-beam backgrounds and beam stability.
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Table 2.1. Summary table of the 250–500 GeV baseline and luminosity and energy upgrade parameters. Also included is a possible 1st stage 250 GeV parameter set (half the original main
linac length)

.

Baseline 500 GeV Machine 1st Stage L Upgrade ECM Upgrade
A B

Center-of-mass energy ECM GeV 250 350 500 250 500 1000 1000
Collision rate frep Hz 5 5 5 5 5 4 4
Electron linac rate flinac Hz 10 5 5 10 5 4 4
Number of bunches nb 1312 1312 1312 1312 2625 2450 2450
Bunch population N ×1010 2.0 2.0 2.0 2.0 2.0 1.74 1.74
Bunch separation ∆tb ns 554 554 554 554 366 366 366
Pulse current Ibeam mA 5.8 5.8 5.8 5.8 8.8 7.6 7.6

Main linac average gradient Ga MV m−1 14.7 21.4 31.5 31.5 31.5 38.2 39.2
Average total beam power Pbeam MW 5.9 7.3 10.5 5.9 21.0 27.2 27.2
Estimated AC power PAC MW 122 121 163 129 204 300 300

RMS bunch length σz mm 0.3 0.3 0.3 0.3 0.3 0.250 0.225
Electron RMS energy spread ∆p/p % 0.190 0.158 0.124 0.190 0.124 0.083 0.085
Positron RMS energy spread ∆p/p % 0.152 0.100 0.070 0.152 0.070 0.043 0.047
Electron polarization P− % 80 80 80 80 80 80 80
Positron polarization P+ % 30 30 30 30 30 20 20

Horizontal emittance γεx µm 10 10 10 10 10 10 10
Vertical emittance γεy nm 35 35 35 35 35 30 30

IP horizontal beta function β∗x mm 13.0 16.0 11.0 13.0 11.0 22.6 11.0
IP vertical beta function β∗y mm 0.41 0.34 0.48 0.41 0.48 0.25 0.23

IP RMS horizontal beam size σ∗x nm 729.0 683.5 474 729 474 481 335
IP RMS vertical beam size σ∗y nm 7.7 5.9 5.9 7.7 5.9 2.8 2.7

Luminosity L ×1034 cm−2s−1 0.75 1.0 1.8 0.75 3.6 3.6 4.9
Fraction of luminosity in top 1% L0.01/L 87.1% 77.4% 58.3% 87.1% 58.3% 59.2% 44.5%
Average energy loss δBS 0.97% 1.9% 4.5% 0.97% 4.5% 5.6% 10.5%
Number of pairs per bunch crossing Npairs ×103 62.4 93.6 139.0 62.4 139.0 200.5 382.6
Total pair energy per bunch crossing Epairs TeV 46.5 115.0 344.1 46.5 344.1 1338.0 3441.0
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Table 2.2. ILC Higgs factory operational modes

.

1st Stage Baseline ILC, after High Rep Rate
Higgs Factory Lumi Upgrade Operation

Center-of-mass energy ECM GeV 250 250 250
Collision rate frep Hz 5 5 10
Electron linac rate flinac Hz 10 10 10
Number of bunches nb 1312 2625 2625
Pulse current Ibeam mA 5.8 8.75 8.75

Average total beam power Pbeam MW 5.9 10.5 21
Estimated AC power PAC MW 129 160 200

Luminosity L ×1034 cm−2s−1 0.75 1.5 3.0

2.1.2 Luminosity and Energy Upgrade Options

The ILC TDR outlines two upgrades. One is the luminosity upgrade to double the average beam
power by adding RF to the linacs. The second is the energy upgrade to double the center of mass
energy to 1 TeV by extending the main linacs. The latter will require substantial additional tunnel
construction and the upgraded 1 TeV machine will consume more electrical power. The TDR also
describes a possible first stage 250 GeV center of mass energy Ḧiggs Factorÿ. These options are
included in Table 2.1.

Two additional options should be considered [215]. The first is operation at 250 GeV center of
mass energy following the baseline luminosity upgrade. The second is the potential for operation at
1.5 TeV center of mass energy. The latter is briefly mentioned in the ILC cover letter submission to
the European Strategy Preparatory Group [216] Here we only consider the luminosity upgrade at 250
GeV center of mass energy. For operation at 250 GeV, a second step may be considered in which the
collider is operated at 10 Hz, instead of 5 Hz, with an average beam power equivalent to that shown
in the L Upgrade 500 column in Table 2.1. It is assumed in what follows that the full Baseline 500
and L Upgrade 500 have been completed. At that point, if the main linac gradient is reduced to half
of nominal, the repetition rate can be doubled without substantially increasing the overall average
power consumption (in a scheme quite similar to that adopted for the electron linac at center of mass
energy below 300 GeV). Naturally, the average beam power is also the same as the L Upgrade 500
beam power. This second step scheme allows the ILC Light Higgs Factory luminosity to be increased
by a factor four from 0.75 e34 cm-2s-1 to 3.0 e34 cm-2s-1. Table 2.2 and Fig. 2.2 summarize the
primary parameters for these three ILC operational modes.

The main impact of low energy ten Hz collision rate operation is on the injector systems: these
must be able to cope with high repetition rate operation without any reduction in gradient, as is
presently conceived only for the electron side (see [3], Part II, Section 2.2.2, page 9). Furthermore,
the positron source undulator must be able to produce adequate positrons using only the nominal
125 GeV luminosity-production electron beam. The latter may require further development of
superconducting helical undulator technology as the helix pitch should be reduced from the present
12 cm (as demonstrated in Ref. [3], Part I, Section 4.3.2, page 129) to 0.9 cm without reducing
the peak field. It is possible that a longer undulator with ILC TDR parameters would be adequate.
Alternatively, an intermediate solution could be considered with a reduced positron yield and possibly
higher electron beam energy. For the latter additional electrical power would be required and the
e+/e- beams might not have equal energy. This does not pose a problem for machine operation in
principle but requires study. In addition, the positron injector system would be operated at 10 Hz,
full gradient, requiring about two times more RF power and cryogenic capacity. Because of the low
center of mass energy positron scheme, this aspect of electron injector operation is already accounted
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Figure 2.2. ILC Stages and Upgrades. The baseline design (yellow) is fully optimized and represents the starting
point for evaluating options. Three options (1st stage, L upgrade and TeV upgrade) are described in the TDR (blue).
A further 3 options are mentioned here (orange and red).

in the TDR.

2.1.3 Gamma-Gamma Option

High energy photon-photon collisions can be achieved by integrating high average power short-pulse
lasers to the Linear Collider, enabling an expanded physics program for the facility including:

• Single Higgs production sensitive to charged particles of arbitrary mass

• Greater reach for single production of supersymmetric Higgs bosons, H and A

• Probe of CP nature of the observed Higgs bosons through control of the polarization of the
Compton photons that define the initial state

• Anomalous couplings in single and double W boson production

• Potential production of supersymmetric particles in electron-gamma collisions
The technology required to realize a photon linear collider continues to mature. Compton back-
scattering technology is being developed worldwide for light source applications and high average
power lasers continue to advance for Inertial Confinement Fusion.

Compton scattering can transfer ∼ 80% of the incident electron energy to the backscattered
photons when a 1 micron wavelength laser pulse is scattered from a 250 GeV electron beam. A laser
pulse of 5 Joules, compressed to 1 ps width and focused to a diffraction limited spot can convert most
of the incoming electrons in a bunch to high energy photons. An enormous amount of average laser
power is required to provide 15,000 laser pulses per second to match the electron beam structure.
Since most of the laser energy goes unused in the Compton process the required energy can be greatly
reduced if the laser pulses can be recirculated.

A design of a recirculating cavity [217] was created in 2001 which takes advantage of the long
inter-bunch spacing in the superconducting machine to recirculate the laser pulses around the outside
of the detector. Calculations showed that the required laser power could be reduced by a factor of
300 in this design. Recent studies have shown that a laser with sufficient phase stability to drive such
a cavity is achievable with current technology. The available power saving for a recirculating system
depends on the achievable cavity size that determines the number of times a laser pulse could be
reused in a single electron bunch train.

Implementation of the photon collider option has several requirements for both the detector
and the electron accelerator. Apertures must be opened in the forward part of the detector to allow
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Table 2.3. Energy and luminosity scenarios assumed in this paper.

Nickname Ecm(1) Lumi(1) + Ecm(2) Lumi(2) + Ecm(3) Lumi(3) Runtime Wall Plug E
(GeV) (fb−1) (GeV) (fb−1) (GeV) (fb−1) (yr) (MW-yr)

ILC(250) 250 250 1.1 130
ILC(500) 250 250 500 500 2.0 270
ILC(1000) 250 250 500 500 1000 1000 2.9 540
ILC(LumUp) 250 1150 500 1600 1000 2500 5.8 1220

the laser pulses to reach the Interaction Point and be focused a few millimeters before the electron
beams collide. The electron beam will be left with an enormous energy spread after the Compton
backscatter and a large crossing angle will be required in order to allow sufficient aperture for the
spent beam to be extracted. Finally, the photon collider option will require its own beam dump design
in order to handle the photon beam which will have about 50% of the final beam energy.

Compton backscattering for the creation of MeV gamma-ray light sources is a world-wide activity.
The basic techniques of bringing an electron beam and a laser pulse into collision is independent
of the electron beam energy and these facilities are providing vital experience in the development
of these techniques for the linear collider. These facilities are also developing the technology for
recirculating laser pulses which will be critical to achieve a cost effective solution for the photon linear
collider. Current MeV gamma-ray sources include the ThomX[218] machine at LAL, the LUCX[219]
machine at KEK and the T-REX[220] machine at LLNL. The MightyLaser collaboration is developing
a four mirror recirculating cavity for the demonstration of Compton backscattering at ATF[221].

While the photon linear collider has always been envisioned as a later stage to the basic linear
collider program there may be advantages to considering it as a first stage. The photon collider
requires an electron linear collider to drive it but it does not require positrons and it does not require
flat electron beams at the Interaction Point in order to reduce the beamstrahlung. This opens up
the possibility of creating a first stage linear collider without a positron source. The creation of a
low-emittance RF electron gun. might also create the possibility of eliminating the damping rings
in the first stage. Consideration of a dedicated photon collider Higgs factory as a first stage to the
linear collider program is motivated by the discovery of a low mass Higgs boson at the LHC.

2.1.4 Energy/Luminosity Running Scenarios

It is of interest to consider the evolution of ILC Higgs physics results over time given the ILC machine
parameters defined in Table 2.1 and Table 2.2. Taking eighteen years as a reasonable ILC lifetime,
and using the concept of a Snowmass Year where an accelerator is assumed to run at its nominal
luminosity for one-third of the time, we assume that the ILC runs for a total of 18× 107 seconds at
nominal luminosity during its life. Without optimization we make the simple assumption that we run
for 3× 107 s at the baseline luminosity at each of the center of mass energies 250, 500, and 1000
GeV, in that order. Following those runs we go back and run for 3× 107 s at the upgraded luminosity
at each of the three center of mass energies.

To avoid a proliferation of table entries, most results are only presented for the four different
combinations of energy and luminosity listed in Table 2.3. Each scenario corresponds to the accumu-
lated luminosity at different points in time. In the summary chapter, however, we present results for
some alternative scenarios where, for example, runs at center of mass energies of 250 and 500 GeV
take place at the upgraded luminosity before any runs at 1000 GeV.
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2.2 Detector Concepts

2.2.1 ILD

The ILD detector is a multi-purpose detector. It has been designed for optimal particle-flow (PFA)
performance and high precision vertexing and tracking performance. The tracking system consists of
a high-precision pixel vertex detector, silicon trackers and a time-projection chamber. The calorimeter
system consists of highly segmented electro-magnetic calorimeter and hadron calorimeter. They are
placed inside a 3.5 Tesla solenoid magnet and achieves high precision measurements of particle flows,
track momentum and vertexes. On the outside of the magnet coil, the iron return yoke is instrumented
as a muon system and as a tail catcher calorimeter. The forward region is covered by 2 layers of pixel
and 5 layers of silicon strip tracker. Calorimeter system covers down to 5 mrad from the outgoing
beam except the hole for the in-coming beam due to 14 mrad crossing angle. The quadrant view of
the ILD detector is shown in Fig.2.3. Further detail of the detector will be found in the reference[5].

Figure 2.3. The ILD detector, showing (left) an isometric view on the platform, and (right) a quadrant view.

The ILC beam operates at 5 Hz, with 1 msec of beam collision period followed by 199 msec quiet
period. This unique beam pulse structure allows data acquisition without a hard ware trigger and
lower power consumption electronics system by adapting the pulsed operation of read out electronics.
The requirement of the electronics system cooling is moderate and a thin detector system could be
realized.

Particle flow requires a thin tracker, to minimize interactions before the calorimeters and thick
calorimeters to fully absorb the showers. Thin vertex detector, as well as the small beam pipe radius,
helps a precise vertex reconstruction even for low momentum tracks. Figure.2.4 (left) shows the
material in the detector in radiation lengths up to the end of the tracking system. The amount of
material up to the end of the tracking is mostly below 10% for the full solid angle. The right-hand
plot shows the total interaction length including hadron calorimeter, showing a calorimeter coverage
by 7 interaction length of coverage in almost all solid angle

For the ILC TDR study, we have developed a realistic detector simulation model. In the model,
we have implemented materials for electronics, cooling system, and support structure based on the
ILD baseline design in order to evaluate the detector performance as realistically as possible. The
simulated data were analyzed with a realistic tracking software, (Marlin tracking packages[222]),
particle flow analysis(PandoraPFANew[223]), flavor tagging analysis(LCFIPlus[224]). In physics event
analysis, background events as low PT hadronic background due to collisions of bremsstrahlung or
beamstrahlung photons and low energy electron/positron backgrounds hitting beam calorimeter were
overlaid on signal events.
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Figure 2.4
Left: Average total
radiation length of
the material in the
tracking detectors as a
function of polar angle.
Right: Total interaction
length in the detector
up to the end of the
calorimeter system and
including the coil.
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According to the performance study using e+e− → qq̄ events and single µ events, we have
obtained the jet energy resolution ( 90% truncated RMS error ) of below 4solid angle and the
momentum resolution of σPT = 2× 10−5 GeV−1 for high momentum tracks. From the study using
e+e− → tt̄ events, the average track reconstruction efficiency of 99.7% for tracks greater than 1
GeV across the entire polar angle range has been achieved. For e+e− → qq̄ events at 91 GeV,
b-quark(c-quark) tagging purity at 60% efficiency was about 100% (60%).

2.2.2 SiD

SiD is a general-purpose detector designed to perform precision measurements at a Linear Collider[5,
225]. It satisfies the challenging detector requirements for physics at the ILC. SiD is the result
of many years of creative design by physicists and engineers, backed up by a substantial body of
past and ongoing detector research and development. While each component has benefitted from
continual development, the SiD design integrates these components into a complete system for
excellent measurements of jet energies, based on the Particle Flow Algorithm (PFA) approach, as well
as of charged leptons, photons and missing energy. The use of robust silicon vertexing and tracking
makes SiD applicable to a wide range of energies from a Higgs factory to beyond 1 TeV. SiD has
been designed in a cost-conscious manner, with the compact design that minimizes the volumes
of high-performing, high-value, components, while maintaining critical levels of performance. The
restriction on dimensions is offset by the relatively high central magnetic field from a superconducting
solenoid.

SiD is a compact detector based on a powerful silicon pixel vertex detector, silicon tracking,
silicon-tungsten electromagnetic calorimetry (ECAL) and highly segmented hadronic calorimetry
(HCAL). SiD also incorporates a high-field solenoid, iron flux return, and a muon identification system
(see Fig. 2.5).

The choice of silicon detectors for tracking and vertexing ensures that SiD is robust with respect
to beam backgrounds or beam loss, provides superior charged-particle momentum resolution, and
eliminates out-of-time tracks and backgrounds. The main tracking detector and calorimeters are
“live” only during each single bunch crossing, so beam-related backgrounds and low-pT backgrounds
from γγ → hadrons processes will be reduced to the minimum possible levels. The SiD calorimetry is
optimized for excellent jet-energy measurement using the PFA technique. The complete tracking and
calorimeter systems are contained within a superconducting solenoid, which has a 5 T field strength,
enabling the overall compact design. The coil is located within a layered iron structure that returns
the magnetic flux and is instrumented to allow the identification of muons.

The tracking system is a key element as the particle-flow algorithm requires excellent tracking
with superb efficiency and good two-particle separation. The requirements for precision measurements,
in particular in the Higgs sector, place high demands on the momentum resolution at the level of
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Figure 2.5. The SiD detector, showing (left) an isometric view on the platform, and (right) a quadrant section.
Colour coding: tracking (red), ECAL (green), HCAL (violet) and the flux return (blue).

δ(1/pT) ∼ 2–5× 10−5 (GeV/c)−1 and the material budget of the tracking system. Highly efficient
tracking is achieved using the pixel detector and main tracker to recognize and measure prompt
tracks.

The SiD vertex detector uses a barrel and disk layout. The barrel section consists of five silicon
pixel layers with a pixel size of 20×20 µm2. The forward and backward regions each have four silicon
pixel disks. In addition, there are three silicon pixel disks at a larger distance from the interaction
point to provide uniform coverage for the transition region between the vertex detector and the outer
tracker. This configuration provides for very good hermeticity with uniform coverage and guarantees
excellent charged-track pattern-recognition capability and impact-parameter resolution over the full
solid angle. The vertex detector design relies on power pulsing during bunch trains to minimize
heating and uses forced air for its cooling. The main tracker technology of choice is silicon-strip
sensors arrayed in five nested cylinders in the central region with an outer cylinder radius of 1.25 m
and four disks in each of the endcap regions. The geometry of the endcaps minimizes the material
budget to enhance forward tracking. The detectors are single-sided silicon sensors with a readout
pitch of 50 µm.

The choice of PFA imposes a number of basic requirements on the calorimetry. The central
calorimeter system must be contained within the solenoid in order to reliably associate tracks to
energy deposits. The electromagnetic and hadronic sections must have imaging capabilities that allow
both efficient track-following and correct assignment of energy clusters to tracks. These requirements
imply that the calorimeters must be finely segmented both longitudinally and transversely.

The combined ECAL and HCAL systems consist of a central barrel part and two endcaps,
nested inside the barrel. The entire barrel system is contained within the volume of the cylindrical
superconducting solenoid. The electromagnetic calorimeter has silicon active layers between tungsten
absorber layers. The active layers use 3.5×3.5 mm2 hexagonal silicon pixels, which provide excellent
spatial resolution. The structure has 30 layers in total, the first 20 layers having a thinner absorber than
the last ten layers. This configuration is a compromise between cost, electromagnetic shower radius,
sampling frequency, and shower containment. The total depth of the electromagnetic calorimeter is
26 radiation lengths (X0) and one nuclear interaction length. The hadronic calorimeter has a depth
of 4.5 nuclear interaction lengths, consisting of alternating steel plates and active layers. The baseline
choice for the active layers is the glass resistive-plate chamber with an individual readout segmentation
of 10×10 mm2. Two special calorimeters are foreseen in the very forward region: LumiCal for precise
measurement, and BeamCal for fast estimation, of the luminosity.
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2 ILC Accelerator Parameters and Detector Concepts

The SiD superconducting solenoid is based on the CMS solenoid design philosophy and construc-
tion techniques, using a slightly modified CMS conductor as its baseline design. Superconducting
strand count in the coextruded Rutherford cable was increased from 32 to 40 to accommodate the
higher 5 T central field. The flux-return yoke is instrumented with position sensitive detectors to
serve as both a muon filter and a tail catcher. The SiD Muon System baseline design is based on
scintillator technology, using extruded scintillator readout with wavelength-shifting fiber and SiPMs.
Simulation studies have shown that nine or more layers of sensitive detectors yield adequate energy
measurements and good muon-detection efficiency and purity.

A large fraction of the software for the generation, simulation and reconstruction is shared
between the detector concepts. The SiD detector is fully implemented and simulated using SLIC,
which is based on Geant4. The background originating from incoherent pair interactions and
from γγ → hadrons for one bunch crossing is fully taken into account by the simulation. The events
are then passed through the reconstruction software suite, which encompasses digitization, tracking,
vertexing and the Pandora PFA algorithm. The material budget of the simulated tracker and the
simulated tracking performance for single particles are shown in Fig. 2.6.
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The material budget of the entire tracking system is less than 0.2 X0 down to very low angles. The
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current design achieves an asymptotic momentum resolution of δ(1/pT) = 1.46× 10−5 (GeV/c)−1

and an transverse impact parameter resolution better than 2 µm. The ability to tag bottom and charm
decays with high purity has been a driving factor in the design of the vertex detector. Figure 2.7 (left)
illustrates the capability of the SiD to separate b-quarks also in the presence of the full beam
background.

Besides the detector performance, sophisticated reconstruction algorithms are necessary to obtain
a jet-energy resolution that allows the separation of hadronic W and Z decays. To avoid a bias from
possible tails, the rms90 value is computed to describe the energy or mass resolution of a particle-flow
algorithm. It is defined as the standard deviation of the distribution in the smallest range that
contains 90% of the events. Figure 2.7 (right) shows the mass resolution of reconstructed Z bosons
in e+e− → ZZ events at different collision energies, where one Z decays to neutrinos, the other to
two light quarks that give rise to two jets.

2.3 Systematic Errors

Most of the errors quoted in this document include statistical errors only. For the three baseline
luminosity scenarios this is an excellent approximation of the total error. For the luminosity upgrade
scenario, however, some thought has to be given to systematic errors.

2.3.1 Flavor Tagging
2.3.1.1 Introduction

We give a ballpark estimate of the systematic uncertainties arising from b tagging in the context of
the Higgs branching ratio measurements. The strategy is to employ control samples to evaluate the
b tagging efficiencies as well as the fake rate due to non-b jets (primarily c jets) passing the b tag
requirements. For the former, we give an estimate using a b jet rich sample selecting the ZZ → ``bb

process. For the latter, we use the WW → `νqq process to obtain a control sample containing very
few b jets in the event. We then evaluate the impact on the uncertainties of BR(h→ bb) assuming a
center-of-mass energy of √s = 250 GeV and an integrated luminosity of L = 250 fb−1 (nominal ILC
case) with an extrapolation to L = 1150 fb−1 for the high luminosity ILC case.

For the b tagging efficiency points, we use the following two points in our estimates ε = 80%
and 50% with the c and uds fake rate summarized in Tab. 2.4, which are read off from Fig. 2.8 which
shows the signal and background efficiencies obtained using LCFIPlus.

Table 2.4. b tagging working points and fake rate for e+e− → qq samples at √s = 91.2 GeV using LCFIPlus.

b tag efficiency c fake rate q fake rate
80% 8% 0.8%
50% 0.13% 0.05%

2.3.1.2 Estimate of b tag efficiency using ZZ → `+`−bb

The signal efficiency is assumed to be 50%, by noting that the analysis will be very similar to the
e+e− → Zh→ ``qq analysis[226]. Background efficiency from the WW process is assumed to be
1%, which should be a conservative estimate. The sample after the first b tag is used as the control

Table 2.5. Selection table for the ZZ analysis. The b tag is applied to one of the two jets.

Process Before selection After selection Tag b (ε = 50%)
ZZ → ``bb 30000 15000 7500
ZZ → ``cc 24000 12000 14
ZZ → ``qq 86000 43000 22
WW → `νcs 1.3× 106 13000 13
WW → `νud 1.3× 106 13000 7
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Figure 2.8. b tagging efficiencies versus background efficiencies for e+e− → qq samples at √s = 91.2 GeV using
LCFIPlus.

sample.
We apply the b tagging with varying efficiencies to our control sample. Since our sample achieves

a purity of over 99%, we can safely neglect the contribution of fake b jets in our estimate of b
tagging efficiencies. We use the standard recipe for computing the selection efficiencies and use
the uncertainty from the binomial distribution

√
p(1− p)/N where N = 7500 and p is chosen for

the varying efficiencies. The results are summarized in Tab. 2.6. We therefore conclude that the

Table 2.6. Expected b-tagging uncertainties at various selection efficiencies.

Efficiency Uncertainty
80% 0.46%
70% 0.53%
60% 0.57%
50% 0.58%

uncertainty in the b tagging efficiency is around 0.3%. Since the uncertainty scales to the statistics of
the control samples, it goes down to around 0.15% in the high luminosity ILC case.

2.3.1.3 Estimate of b tagging fake rate using the WW → `νqq process

Here we assume a selection efficiency of 10% for WW → `νqq events. The selection for this process
could proceed by selecting an isolated lepton with tight lepton identification criteria and no more than
one isolated lepton with loose lepton identification criteria. We assume that the dominant background
in this case will be due to ZZ → ττbb events where one τ will result in hadronic jets while the other
τ undergoes one-prong leptonic decay.

Table 2.7. Summary of selection for the fake rate measurement. Here the b tag selection is such that one of the two
jets will pass the b tag requirement at the specified efficiency.

Process Before selection After selection b tag (εb = 80%) b tag (εb = 50%)
WW → `νcs 1.3× 106 1.3× 105 (10%) 11310 (8.7%) 234 (0.18%)
WW → `νud 1.3× 106 1.3× 105 (10%) 2080 (1.6%) 130 (0.1%)
ZZ → ττbb 8500 85 (1%) 82 (96%) 64 (75%)

We give an estimate of the fake rate as follows. The contribution of the fake rate from
WW → `νcs will be dominated by c jets as we can infer from Tab. 2.4. As the uncertainty for this
number, we take the number of WW → `νud events as the full uncertainty, which should be a very
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conservative estimate. This gives 20% (100%) as the relative uncertainty in the fake rate for the case
of εb = 80% (50%).

2.3.1.4 Estimate of branching ratio systematic uncertainty

We now translate these results into the Higgs branching ratio analysis. We take the nominal Higgs
branching ratios of BR(h→ bb) = 58% and BR(h→ cc) = 2.9%. For the b tagging working point
of εb = 80%, the fake rate from c jet is around εc = 8 ± 2% including the uncertainty which was
just estimated. Applying this b tag gives BR(h→ bb) · εb = 46.4± 0.14% and BR(h→ cc) · εc =
0.23± 0.06% where we took 0.3% as the relative uncertainty in εb and 20% for the uncertainty in
εc. Similarly for the εb = 50% working point, we compute BR(h → bb) · εb = 29.0 ± 0.09% and
BR(h→ cc) · εc = 0.038± 0.038%, where we took 0.3% as the relative uncertainty in εb and 100%
for the uncertainty in εc.

We conclude that despite the large relative uncertainty in c jet tagging, the overall uncertainty is
dominated by the uncertainty in b jet tagging due to the small h→ cc branching ratio. It is estimated
that the uncertainty in the b tagging efficiency in the observable σ(e+e− → Zh) · BR(h → bb) is
at the 0.3% level in the nominal ILC and at the 0.15% level in the ILC luminosity upgrade case.
Prospects for improving these numbers include refined selection of the control samples (before the
first b tagging) and the addition of other ZZ and Zγ modes which will require background estimates
with an actual simulation analysis. Moving up to √s = 350 GeV provides additional clean control
samples from fully leptonic top pair decays e+e− → tt→ b`νb`ν.

2.3.1.5 Summary and prospects

We put forth a ballpark argument for the b tagging systematic uncertainty in the context of the Higgs
branching ratio measurement. Our preliminary findings are that the dominant contribution comes
from the uncertainty in the estimate of the b efficiency, which is at the level of 0.3% (nominal ILC) /
0.15% (high luminosity ILC) when applied to the Higgs branching ratio measurement. This number is
expected to improve by including additional modes. The contribution from the fake rate is found to
be negligible. It is highly desired to refine these estimates using a proper simulation study including
all background processes.

2.3.2 Luminosity

The number of Bhabha events per bunch crossing for a detector with minimum and maximum polar
angle coverage θmin and θmax (in mrad) is:

N = 0.5pb L
R

θmax∫
θmin

dcosθ
sin4θ/2

∼ 6× 10−6
(

1
θ2

min
− 1
θ2

max

)

for √s =0.5 TeV, L=2×1034cm−2s−1, and bunch crossing rate R=1.4 × 104s−1. Our goal is to
measure the luminosity normalization with an accuracy of several 10−4 for √s =0.5 TeV. To do
this one needs ≈ 108 events collected over ≈ 107 s, or about ten events per second. One can then
calculate the absolute luminosity with ≈ 10% statistical error every several minutes during the run.
With a bunch crossing rate of 1.4× 104s−1, we need > 10−3 events per bunch crossing. To achieve
this statistical accuracy, we start the fiducial region for the precision luminosity measurement well away
from the beamstrahlung pair edge at θ=20 mrad, with a fiducial region beginning at θmin=46 mrad,
which gives ≈ 2× 10−3 events per bunch crossing.

Since the Bhabha cross section is σ ∼ 1/θ3, the luminosity precision can be expressed as

∆L
L

= 2∆θ
θmin

,
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Table 2.8. Systematic errors assumed throughout the paper.

Baseline LumUp
luminosity 0.1% 0.05%
polarization 0.1% 0.05%
b-tag efficiency 0.3% 0.15%

where ∆θ is a systematic error (bias) in polar angle measurement and θmin = 46 mrad is the minimum
polar angle of the fiducial region. Because of the steep angular dependence, the precision of the
minimum polar angle measurement determines the luminosity precision. To reach the luminosity
precision goal of 10−3, the polar angle must be measured with a precision ∆θ < 0.02 mrad and the
radial positions of the sensors must be controlled within 30 µm relative to the IP.

2.3.3 Polarization

The primary polarization measurement comes from dedicated Compton polarimeters detecting backscat-
tered electrons and positrons. A relative polarization error of 0.1% is expected from implementing
polarimeters both upstream and downstream of the Interaction Region. In addition the polarization
can be measured directly with physics processes such as e+e− → W+W− . Combining the two
techniques we assume a polarization systematic error on cross section times branching ratios of 0.1%
and 0.05% for the baseline and upgraded luminosities, respectively.

2.3.4 Systematic Error Summary

The systematic errors that are used throughout this paper are summarized in Table 2.8.
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Chapter 3
Higgs Mass, ZH Cross Section, Spin
and CP

3.1 Higgs Mass and σ(ZH) Measurements

The Higgs mass and the total cross section for e+e− → Zh are measured simultaneously in the process
e+e− → Zh, with Z → µ+µ−, Z → e+e−, and Z → qq̄ decays. Here the shape of the distribution
of the invariant mass recoiling against the reconstructed Z provides a precise measurement of mh,
while the normalization of the distribution provides the total cross section σ(ZH) independently of the
Higgs decay mode. In particular, the µ+µ−X final state provides a particularly precise measurement
as the e+e−X channel suffers from larger experimental uncertainties due to bremsstrahlung. It should
be noted that it is the capability to precisely reconstruct the recoil mass distribution from Z → µ+µ−

that defines the momentum resolution requirement for an ILC detector. A measurement using Z → qq̄

decays appears to only be feasible at √s ≥ 350 GeV. A study of this channel at √s = 500 GeV is
presented here.

3.1.1 l+l−h at
√
s = 250 GeV

The reconstructed recoil mass distributions, calculated assuming the Zh is produced with four-
momentum (

√
s, 0), are shown in Fig.3.1. In the e+e−X channel FSR and bremsstrahlung photons

are identified and used in the calculation of the e+e−(nγ) recoil mass. Fits to signal and background
components are used to extract mh and σ(ZH). Based on this model-independent analysis of Higgs
production in the ILD detector, it is shown that mh can be determined with a statistical precision
of 40 MeV (80 MeV) from the µ+µ−X (e+e−X) channel. When the two channels are combined
an uncertainty of 32 MeV is obtained [227, 228]. The corresponding model independent uncertainty
on the Higgs production cross section is 2.6 %. For a luminosity of 1150 fb−1 at √s=250 GeV (our
scenario 4) the uncertainty on the Higgs mass and production cross section drop to 15 MeV and
1.2 %, respectively.

Similar results were obtained from SiD [225]. It should be emphasized that these measurements
only used the information from the leptonic decay products of the Z and are independent of the Higgs
decay mode. As such this analysis technique could be applied even if the Higgs decayed invisibly and
hence allows us to determine the absolute branching ratios including that of invisible Higgs decays.

3.1.2 l+l−h at
√
s = 500 GeV

A Higgs recoil mass analysis has been done at √s = 500 GeV with ILD full detector simulation. At
√
s = 500 GeV the Zh cross section is about one-third compared to √s = 250 GeV. Also there are

numerous backgrounds from t-channel processes such as ZZ at√s = 500 GeV. Those aspects make
the Zh analysis at √s = 500 GeV less powerful than at √s = 250 GeV; however the result can be
combined with the √s = 250 result to improve the overall Zh total cross section accuracy.

87



3 Higgs Mass, ZH Cross Section, Spin and CP

115 120 125 130 135 140
0

50

100

150

 /GeVrecoilm
115 120 125 130 135 140

E
v
e

n
ts

0

50

100

150

Signal+Background

Fitted signal+background

Signal

Fitted background

a)
X-μ+μ→ZH

/GeVrecoilm
115 120 125 130 135 140

E
v
e
n
ts

0

20

40

60

80

100

115 120 125 130 135 140
0

20

40

60

80

100

Signal+Background

Fitted signal+background

Signal

Fitted background

b)
)Xγ(n-e+ e→ZH

Figure 3.1. Results of the model independent analysis of the Higgsstrahlung process e+e− → Zh at √s = 250 GeV
in which (a) Z → µ+µ− and (b) Z → e+e−(nγ). The results are shown for P (e+, e−) = (+30%,−80%) beam
polarization.
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Figure 3.2. Results of the model independent analysis of the Higgs-strahlung process e+e− → Zh at √s = 500 GeV
in which (a) Z → µ+µ− and (b) Z → e+e−(nγ). The results are shown for P (e+, e−) = (+30%,−80%) beam
polarization.

Firstly, lepton tagging is applied to both the muon and electron channels. For the muon, the
cluster energy is required to be smaller than half of the track energy. For the electron, the ratio of
the energy deposited in the ECAL to the total calorimeter energy must be greater than 90%, and the
cluster energy is required to be between 70% and 140% with respect to the track energy. For the
electron channel, all neutral particles with cos θ < 0.99 with respect to the electron candidate are
added to the candidate electron to recover photons from final state radiation and bremsstrahlung. If
more than two lepton candidates are found, a pair giving the dilepton mass nearest to the Z mass is
selected.

Cuts on the Z mass, recoil mass, and di-lepton pT are applied. Additional cuts are applied to
the acoplanarity of the di-lepton system and the difference between the pT of the di-lepton and the
most energetic neutral particle. Likelihood cuts are applied as the final cuts, with input variables of
di-lepton pT , Z mass, di-lepton cos θ and acollinearity of di-lepton.

The resultant recoil mass distributions with fit are shown in Figure 3.2. The cross section error
is 6.49% in µµh channel and 7.10% in eeh channel. The combined resolution for the Zh→ ``h at
√
s = 500 GeV is 4.8%.
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3.1 Higgs Mass and σ(ZH) Measurements

Figure 3.3. The recoil mass of inclusive jet pair after subtracting background processes.

3.1.3 qq̄h at
√
s = 500 GeV

At √s = 500 GeV, the total cross section for e+e− → qq̄h is about 70 fb with an e−/e+ beam
polarization of -80%/+30%. About 35k such events are produced for 500 fb−1 integrated luminosity.
Unlike the situation at √s = 250 GeV, the Z and h contain a significant boost at √s = 500 GeV and
the decay product jets can be unambiguously associated with the parent Z or h boson. The major
background processes are 4-fermion W+W−, Z0Z0, and 2-fermion qq̄.

The energy of the Z from the Zh process is more than 200 GeV, and the two jets from the Z
overlap significantly. Therefore, we reconstruct the hadronically decaying Z as a single jet by the
kt jet algorithm with a jet radius of 1.2. From reconstructed jets, candidate jets are preselected by
requiring that (1) the jet pt be greater than 50 GeV, (2) the jet mass be between 70 and 150 GeV/c2,
and (3) the jet energy be between 210 and 300 GeV.

With a fixed jet radius, both jet mass and jet energy are reduced if some decay products from
the Z are outside the jet radius. This effect was corrected by assuming a linear relationship between
jet mass and jet energy; in this way a better separation between Z jets and non-Z jets was achieved.
For the final selection we required that (1) the corrected jet mass be between 87 and 105 GeV/c2, (2)
the maximum energy of a photon in the event be less than 100 GeV, (3) the number of particles in
the jet be greater than 20, and (4) the jet angle satisfy | cos θjet| < 0.7.

The recoil mass distribution of selected events is shown in Fig. 3.3. The figure shows the
distribution after subtracting background events. The error bar and the central value of the histogram
correspond to the actual event statistics. All standard model processes simulated for the ILC TDR
were considered as background. For the number of events with the recoil mass between 100 and 210
GeV/c2, S/N is 11113/175437=0.063. 43% of the backgrounds are due to 4-quark events through
ZZ and WW processes. Other 4-fermion processes and 2-fermion hadron events constitute 26% and
27% of background events, respectively. The relative cross section error for 500 fb−1 is 3.9% [229].
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Figure 3.4. Threshold scan of the e+e− → Zh process for mh = 120 GeV, compared with theoretical predictions for
JP = 0+, 1−, and 2+ [230].

3.2 Higgs Spin Measurement

The threshold behavior of the Zh cross section has a characteristic shape for each spin and each
possible CP parity. For spin 0, the cross section rises as β near the threshold for a CP even state and
as β3 for a CP odd state. For spin 2, for the canonical form of the coupling to the energy-momentum
tensor, the rise is also β3. If the spin is higher than 2, the cross section will grow as a higher power
of β. With a three-20 fb−1-point threshold scan of the e+e− → Zh production cross section we can
separate these possibilities [230] as shown in Fig. 3.4. The discrimination of more general forms of
the coupling is possible by the use of angular correlations in the boson decay; this is discussed in
detail in [231].

At energies well above the Zh threshold, the Zh process will be dominated by longitudinal
Z production as implied by the equivalence theorem. The reaction will then behave like a scalar
pair production, showing the characteristic ∼ sin2 θ dependence if the h particle’s spin is zero. The
measurement of the angular distribution will hence strongly corroborate that the h is indeed a scalar
particle.
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Figure 3.5. Determination of CP -mixing with 1-σ bands expected at √s = 350 GeV and 500 fb−1 [232].

3.3 Higgs Sector CP Measurements
3.3.1 Introduction

The analytic power of the ILC is emphasized when we consider more detailed questions. It is possible
that the h is not a CP eigenstate but rather a mixture of CP even and CP odd components. This
occurs if there is CP violation in the Higgs sector. It is known that CP violation from the CKM
matrix cannot explain the cosmological excess of baryons over antibaryons; thus, a second source of
CP violation in nature is needed. One possibility is that this new CP violation comes from the Higgs
sector and gives rise to net baryon number at the electroweak phase transitions, through mechanisms
that we will discuss in Section 9.1 of this report. For these models, the h mass eigenstates can be
mainly CP even but contain a small admixture of a CP odd component.

3.3.2 e+e− → ZH

A small CP odd contribution to the hZZ coupling can affect the threshold behavior. The right-hand
side of Fig. 3.5 shows the determination of this angle at a center of mass energy of 350 GeV from the
value of the total cross section and from an appropriately defined optimal observable [232].

A new result was presented during the Snowmass study [233] for the CP mixing that would appear
in the hZZ coupling in both the pp and e+e− colliders. The analysis utilized a simplified detector
simulation based on the smearing of parton-level information and simply assumed 30 % efficiency
and 10 % background for the signal process: e+e− → Zh → µ+µ−bb̄. From the cross section
and the observables concerning the production and decay angles of both the Z and h bosons, the
analysis estimated the expected sensitivity to the effective fraction of events due to the CP violating
coupling, fa3, which was then translated to that of the corresponding fraction of the anomalous
contribution for the Higgs to two vector boson decays, fdec

a3 , used in earlier CMS studies. If the Zh
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cross-section is first measured at the center of mass energy, √s = 250 GeV (250 fb−1), and then at
350 (350 fb−1), 500 (500 fb−1), and 1000 GeV (1000 fb−1), fa3 can be measured to 0.035, 0.041,
and 0.055, respectively, which would translate to precision on fdec

a3 of 10−4, 4 × 10−5, and 10−5,
respectively. However, the relative contributions of various possible anomalous couplings to the cross
section might depend on the underlying dynamics that would appear as form factors in the anomalous
couplings and would depend on the virtuality of Z∗. At the ILC, the q2 dependence can be separated
by performing angular analyses separately at different energies since the virtuality of Z∗ is fixed at
a fixed center-of-mass energy. The expected precision of fa3 is in the range of 0.03 - 0.04, being
independent of the center-of-mass energy, and translates to 7× 10−4 to 8× 10−6, entering a region
sensitive to a possible loop-induced CP-violating contribution.

3.3.3 H → τ+τ−

Tests of mixed CP property using the hZZ coupling may not be the most effective ones, since the
CP odd hZZ coupling is of higher dimension and may be generated only through loops. It is more
effective to use a coupling for which the CP even and CP odd components are on the same footing.
An example is the h coupling to τ+τ−, given by

∆ L = −mτ

v
h τ̄(cosα+ i sinαγ5)τ (3.1)

taucouple for a Higgs boson with a CP odd component. The polarizations of the final state τs
can be determined from the kinematic distributions of their decay products; the CP even and odd
components interfere in these distributions [234]. In [235], it is estimated that the angle α can be
determined to an accuracy of 6◦ with 1 ab−1at √s = 350 GeV in the case of maximal CP mixing,
α = π/4. A similar study has been performed in [236] for a 120 GeV Higgs boson assuming the
baseline ILC machine running at √s = 230 GeV for an integrated luminosity of 500 fb−1 with beam
polarizations of (Pe− , Pe+) = (−0, 8,+0.3). A full simulation for the e+e− → Zh → µ+µ−τ+τ−

mode in the study showed that with an inclusion of other Z decay modes an expected statistical
precision of ∆α = 0.135 (i.e. 28 %) could be achieved for α = −π/8 given the baseline integrated
luminosity of 500 fb−1.

3.3.4 e+e− → tt̄H

In the presence of CP violation, only the CP–even component of the HZZ coupling is projected out
in Higgs decays to ZZ. The ZZ couplings of a pure CP–odd A state are zero at tree–level and are
generated only through tiny loop corrections.

The decays of the Higgs boson to fermions provide a more democratic probe of its CP nature
since, in this case, the CP–even and CP–odd components can have the same magnitude. One therefore
needs to look at channels where the Higgs boson is produced and/or decays through these couplings.

A promising production mode for studying the Higgs CP properties is e+e− → tt̄H. The
production of a spin 0 state with arbitrary model-independent CP properties in association with a top
quark pair at the ILC was investigated in Ref. [237, 238]. The CP properties of the Higgs coupling to
the top quarks were parametrized in a model-independent way by a parameter a for a CP-even Higgs,
by a parameter b for a CP-odd Higgs and by simultaneously non-vanishing a and b for a CP-mixed
state:

CttΦ = −igttH(a+ ibγ5) . (3.2)

Notice that in the Standard Model, a = 1 and b = 0.
These parameters were determined by a measurement of the total cross section, the polarization

asymmetry of the top quark and the up-down asymmetry of the antitop quark with respect to the
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Figure 3.6. Errors ∆a+ (upper left) and ∆a− (upper right) on a as well as ∆b+ (lower left) and ∆b− (lower right)
on b, by combining all 3 observables σ, Pt, Aφ, at 1σ confidence level for MΦ = 120 GeV and √s = 800 GeV with
L = 500 fb−1. The electron and positron beams are polarized with (Pe− , Pe+) = (−0, 8,+0.3). The colour code
indicates the magnitude of the respective error.

top-electron plane. The former two observables are CP-even and can be exploited to distinguish
a CP-even from a CP-odd Higgs boson. Since the up-down asymmetry Aφ is CP-odd, it can be
exploited directly and unambiguously to test CP violation.

The sensitivities to a and b were studied in each observable separately before investigating the
combination of all three observables. It was found that the total cross section is most sensitive to
a and to some extent to b. The observables Pt and Aφ do not exhibit much sensitivity to a and
b, although polarization of the initial e± beams slightly improves the sensitivity in case of Pt. The
combination of all three observables, however, reduces the error on a for polarized e± beams as
shown in Fig. 3.6. If we assume that a2 + b2 = 1 and parametrize a and b as a = cosφ and
b = sinφ, as in eq. (3.1) for h→ τ+τ−, then the cross section alone will be a measure of the mixing
angle, φ. Fig.3.7-(a) shows the e+e− → tt̄h cross section as a function of sin2 φ at three different
center of mass energies: √s = 500, 520, and 1000 GeV. The cross section values are translated into
the expected 1-σ bounds and shown in Fig.3.7-(b) as a function of sin2 φ for the three energies
assuming 500 fb−1 for √s = 500 and 520 GeV, and the baseline 1 ab−1 and the upgraded 2.5 ab−1 at
√
s = 1 TeV [239]. The figure tells us that the contribution from the CP-odd component could be

constrained to ∼ 5% at 1-σ.
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Chapter 4
Cross Section Times Branching Ratio
Measurements I

The measurement accuracies of the cross section times branching ratio (σ ·BR) for Higgs decay to
bb̄, cc̄, gg, WW ∗ and τ+τ− are described in this chapter.

4.1 h→ bb̄, cc̄, gg

4.1.1 250 GeV and 350 GeV

The measurement accuracies of the cross section times branching ratio ∆(σ ·BR) for Higgs decays
to bb̄, cc̄ and gluons were studied in the ILD and SiD LOI’s [225, 227] at √s = 250 GeV assuming
mh = 120 GeV. A comprehensive study at 250 GeV and 350 GeV with mh = 120 GeV was reported
in Ref. [240], which is presented below.

At these energies the Higgsstrahlung process (e+e− → Zh) is the dominant contribution to the
Higgs production. Therefore, the event signatures of 4-jet(qq̄h) and 2-lepton (e+e−orµ+µ−)+2-jet
(`¯̀h) were studied in addition to missing energy + 2-jet (νν̄h) events. In the case of the 4-jet analysis,
the particles in the event were forcibly clustered to four-jets, from which the dijet pairs for the h and
Z candidates were selected as the pairs which minimized the dijet mass χ2 for Z and h bosons. The
background events were rejected by cuts on the number of tracks for each jet, the maximum scaled
jet mass (ymax) needed to cluster as four jets, the thrust, the thrust angle and the Higgs production
angle. The kinematical constraint fit was applied to the four jets to improve background rejection.
Finally, the likelihood ratio (LR) was derived from the thrust, cos θthrust, the minimum angle between
all the jets, the number of particles in the Higgs candidate jets, and the fitted Z and Higgs masses.
The cut position to select 4-jet candidates was chosen to maximize the signal significance. The
background fractions after all cuts are 80% qq̄qq̄ and 20% qq̄ at 250 GeV, and 60% qq̄qq̄, 30% qq̄

and 10% tt̄ at 350 GeV
In the case of the 2-lepton + 2-jet mode an event must have an e+e− or µ+µ− pair with mass

consistent with the Z, and the mass of everything else must be consistent with the h. Additionally,
cuts on the production angle of the Z and the lepton pair recoil mass were applied to improve the
signal to noise ratio.

In the analysis of the missing energy+2-jet mode all visible objects were forced into two jets, and
the four vector sum of the two jets had to have a PT and mass consistent with the Higgs. In contrast
to the 1 TeV study, the recoil mass calculated from the two jets was required to be consistent with
the Z mass because the Higgsstrahlung process is dominant at these energies; in addition this cut
was effective in reducing backgrounds from non-Higgs four fermion processes. The likelihood ratio
(LR) was formed from the recoil mass, the number of particles, the jet momentum, the jet pair mass
and the minimum of the scaled jet mass for forced 2-jet clustering.

With 250 fb−1 at 250 GeV (250 fb−1 at 350 GeV), the signal significance, S/
√
S +B, is 47.9
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(66.4) for νν̄h, 32.3(47.1) for qq̄h, 22.4(16.7) for e+e−h and 28.2 (19.2) for µµ̄h.
In order to evaluate the flavor content of the selected events, the flavor likeness of dijet events was

calculated by LCFIPlus and fitted by a template consisting of h→ bb̄, h→ cc̄, h→ gg, other Higgs
decays and the standard model processes. Pseudo experiments were performed with the fraction of bb̄,
cc̄ and gg as free parameters, and ∆σ ·BR was determined by the widths of the fitted distribution.
The results are summarized in Table 4.1

Table 4.1. Summary of the sensitivity to σ · BR for Higgs decay to bb̄, cc̄, gg at 250 GeV with 250 fb−1 and
P (e−)/P (e+) = −80%/+ 30% and 350 GeV with 250 fb−1 and P (e−)/P (e+) = −80%/+ 30%. mh = 120 GeV
was used for this analysis.

Energy channel missing+2-jet 4-jet e+e−+2-jet µ+µ−+2-jet Combined

250 GeV ∆σ·BR
σ·BR (h→ bb̄) 1.7 1.5 3.8 3.3 1.0

∆σ·BR
σ·BR (h→ cc̄) 11.2 10.2 26.8 22.6 6.9

∆σ·BR
σ·BR (h→ gg) 13.9 13.1 31.3 33.0 8.5

350 GeV ∆σ·BR
σ·BR (h→ bb̄) 1.4 1.5 5.3 5.1 1.0

∆σ·BR
σ·BR (h→ cc̄) 8.6 10.1 30.5 30.9 6.2

∆σ·BR
σ·BR (h→ gg) 9.2 13.7 35.8 33.0 7.3

The σ ·BR accuracies for a Higgs with 125 GeV mass were obtained by scaling the number of
signal events according to the branching ratio while keeping the number of background events the
same. From this extrapolation ∆σ·BR

σ·BR for h→ bb̄, cc̄, and gg were estimated to be 1.2%, 8.3% and
7.0%, respectively, assuming 250 fb−1 at √s = 250 GeV[241].

The νeν̄eh WW−fusion channel was studied in the h → bb̄ channel at √s = 250 GeV using
the ILD full simulation[242]. From a χ2 fit of the missing mass distribution, the contributions from
the WW -fusion channel and the Higgsstrahlung channel were separated. A measurement accuracy
of ∆σνν̄h·BR

σνν̄h·BR = 0.11 was obtained with 250 fb−1 assuming P (e−)/P (e+) = −80%/ + 30% and
mh = 126 GeV.

4.1.2 500 GeV

The Higgs decay to bb̄ in the process e+e− → νν̄h at 500 GeV was studied by ILD[242] using full
simulation with mh = 125 GeV.

In order to remove piled up background particles, the anti-kt jet algorithm was employed with
the jet size parameter R = 1.5. Events with an isolated muon or electron were removed, and events
with 2 b-tagged jets were selected. The visible energy and missing PT were required to be consistent
with νν̄ production, and the recoil mass opposite the dijet was required to be greater than 172 GeV
to reject Z → νν̄ events. The dijet mass distribution for selected events is shown in Figure 4.1.

The signal events were selected with 66% efficiency and a signal-to-noise ratio of 3.7. The main
background was e+e− → νν̄Z, which is labelled as 4f sznu sl in Figure 4.1. The signal significance
for the h→ bb̄ channel was 150 and ∆(σ ·BR)/(σ ·BR) = 0.667%.

The decays h→ cc̄ and gg were studied at 500 GeV[243] using the ILD full simulation samples
for the ILC TDR. The analysis strategy is similar to the 1 TeV case in order to select Higgs production
via the WW fusion process e+e− → νeν̄eh. However, since no low pT γγ → hadron background
was overlaid the Durham jet clustering algorithm[244] was applied instead of the kt algorithm. Events
with two jets were selected by cuts on PT , PZ , Pmax, Ncharged with efficiencies of 57%, 46%, 65%
for h → bb̄, cc̄ and gg, respectively. Among the background processes considered, νν̄qq̄ and ν`qq̄

were the largest. Flavor composition was determined using the template method described above.
The following sensitivities were obtained assuming 500 fb−1 and P (e−)/P (e+) = −80%/ + 30%:
∆(σ · BR)/(σ · BR) = 0.6%(bb̄), 5.2%(cc̄) and 5.0%(gg). The result can be extrapolated to the
case of mh = 125 GeV by scaling the signal yield by the total cross section and the branching ratio:
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Figure 4.1
The dijet mass distribu-
tion of e+e− → νν̄h→
νν̄bb̄ at √s = 500 GeV
assuming 500 fb−1,
P (e−)/P (e+) =
−80%/ + 30%, and
mh = 125 GeV.
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∆(σ · BR)/(σ · BR) = 0.66%(bb̄), 6.2%(cc̄) and 4.1%(gg). Note that this result for h → bb̄ is
consistent with the dedicated h→ bb̄ study described earlier.

The results from the Zh process were obtained by extrapolating the 250 GeV full simulation
results. The number of signal and background events before template fitting were scaled according to
the cross section, and then they were extrapolated according to the enhanced statistical significance
from the template fitting. As a result, ∆σ·BR

σ·BR with 500 fb−1 at 500 GeV with (−80%,+30%)
polarization was estimated to be 1.8%, 13%, and 11% for h→ bb̄, cc̄, and gg respectively.

4.1.3 1 TeV

The Higgs decays to bb̄, cc̄, and gg were studied at 1 TeV as one of the detector benchmark studies
for the ILC TDR by the ILD and SiD concept groups. At this energy the Higgs is produced dominantly
by the process e+e− → νν̄h. Therefore, the event signature is a large missing PT due to un-detected
neutrinos and 2 jets from Higgs decays to bb̄, cc̄, and gg, with their invariant mass consistent with the
Higgs. To minimize the effect of the low PT hadron events, which are produced at an average rate of
4.1 events per bunch crossing at 1 TeV, both ILD and SiD employed the kt jet clustering algorithm
with a size parameter, R, of 1.5 (1.1 in the case of ILD).

After the jet clustering the candidate 2-jet events were selected by cuts on the visible PT , visible
energy, visible mass, the jet production angles, and the number of tracks. In the case of the SiD
analysis, these variables were used to form Fisher Discriminants implemented in TMVA together with
the flavor tagging variables for b jets and c jets. Fisher discriminants which maximized the significance
for each decay mode were used to obtain the final results. The uncertainties on the cross section
times Higgs branching ratios were determined from the numbers of signal and background events
passing each selection. A typical Higgs mass distribution in the case of SiD is shown in Figure 4.2.

In the case of the ILD analysis[243], a flavor tagging template fitting was performed to extract
σ·BR for the different channels. The flavor templates of h→ bb̄, cc̄, gg, and background channels were
obtained from the flavor tagging output of the LCFIPlus package. Taking into account the b-tagging
efficiency systematic error of 0.3%, the accuracies for 1 ab−1 and P (e−)/P (e+) = −80%/+ 20%
beam polarization were 0.49%, 3.9%, and 2.8% for h→ bb̄, cc̄, and gg respectively. Following the
publication of the ILC TDR, improvements to background rejection were developed [241], leading to
relative σ ·BR errors of 0.45%, 3.1%, and 2.3% for h→ bb̄, cc̄, and gg respectively.
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4 Cross Section Times Branching Ratio Measurements I

Figure 4.2
The visible mass
distribution for the
h → bb̄ analysis
without the visible
mass cut for 500 fb−1

and P (e−)/P (e+) =
−80%/+ 20%.

4.2 h→WW ∗

4.2.1 500 GeV

The full simulation study of the process, e+e− → νν̄H → νν̄WW ∗ was performed using the fully
hadronic mode of WW ∗. In this case the event signature is 4 jets with missing energy and missing
momentum and mass consistent with Higgs. The 2 jets from the W ∗ are soft and the piled up low
PT particles due to γγ collisions have to be removed effectively. To this end, a multivariate analysis
(MVA) to identify pile up particles was employed using PT and rapidity. In the case of charged
particles, the closest approach to the interaction point along the beam axis (Z0) was also used to
reduce background contamination. Figure 4.3 shows the boosted decision tree (BDT) MVA response
for neutral and charged particles.

Figure 4.3
BDT response for par-
ticles from νν̄h →
WW ∗ → qq̄qq̄ events
and low PT hadron
background events for
neutral particles (left)
and charged particles
(right).
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After rejecting background tracks by the MVA, events with isolated muons or electrons were
removed and anti-kt jet clustering was employed to select 4-jet events. Each jet was required to not
be tagged as a b-jet, and one jet pair must have its mass consistent with the W with the other jet pair
mass between 11 and 64 GeV. The 4-jet mass distibution for selected events is shown in Figure 4.4.

The signal selection efficiency was about 43%. The major backgrounds were other Higgs decays
and the semi-leptonic channels for e+e− → ZZ or WW . The signal-to-noise ratio was about 1.
For 500 fb−1, the signal significance, S/

√
S +B, was 35 and ∆(σ ·BR)/(σ ·BR) = 2.8%. When

combined with an analysis of the semileptonic channel for h→WW∗ [242] the precision improves to
∆(σ ·BR)/(σ ·BR) = 2.4%.
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Figure 4.4
4-jet mass distribution
for selected events in
the h→WW ∗ study.
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4.2.2 1 TeV

The decay h→WW ∗ was studied at 1 TeV by ILD and SiD for the ILC TDR using the fully hadronic
decay mode of WW ∗. The signal final state is four jets consistent with WW ∗, with total mass
consistent with the Higgs mass, and large missing energy and missing transverse momentum.

In the ILD analysis background from pile-up events was removed by employing the kt jet clustering
algorithm with R = 0.9 and Njet = 4. Further, the Durham algorithm was applied to force the
remaining particles to be clustered into four jets, which were paired so that one dijet system had a mass
consistent with the W , while the other had a mass between 15 and 60 GeV. To reduce background from
h→ bb̄ the b-likeness of each jet was required to be low. The signal selection efficiency was 12.4%,
and the remaining major backgrounds were 4-fermions (e+e− → νν̄qq̄), 3-fermions (eγ → νqq̄) and
other decay channels of the Higgs. The reconstructed Higgs mass distribution is shown in Figure 4.5.

With 1 ab−1 luminosity and a beam polarization of P (e−) = −80%, P (e+) = +20%, ILD
obtained ∆(σ ·BR)/(σ ·BR) = 2.5%. SiD obtained a similar result. By including the semi-leptonic
topology for h→WW ∗, and by using the particle-based MVA technique to better reject pileup, the
precision for h→WW ∗ improves to ∆(σ ·BR)/(σ ·BR) = 1.6% [241].

Figure 4.5
ILD reconstructed
Higgs mass distribu-
tion for the h→WW ∗

analysis in the fully
hadronic decay channel.
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4.3 h→ τ+τ−

4.3.1 250 GeV

The full simulation samples of the ILD LOI [227] were used for the study of h→ τ+τ− in Ref. [245].
In this study the Higgsstrahlung process (e+e− → Zh) at √s = 250 GeV was considered using
mh = 120 GeV and the Z decay modes Z → l+l− (l = e, µ) and Z → qq̄.

In the case of Z → l+l−, events with an l+l− mass consistent with the Z were selected, where
the l+l− tracks were required to come from the IP to reject such tracks from τ decay. Particles other
than those from the Z were fed to a tau jet finder, which identified low mass ( < 2 GeV ) jets using
particles within 1 radian of an energetic track. Signal events were required to have a τ+, a τ− and
an l+l− recoil mass close to the Higgs mass. The signal events were selected with an efficiency of
47% and 62% for the e+e− and µ+µ− channels, respectively. The S/N was 1.43 (1.44) for e+e−

(µ+µ−), and the signal significance was 8.0σ (8.8σ) for the e+e− (µ+µ−) channel.
In the case of Z → qq̄, a tau-jet was formed using an energetic track and all particles within

0.2 radians of the energetic track. The mass of a tau-jet was required to be less than 2 GeV, and
additional cuts on the τ energy and isolation were applied to reduce mis-identified quark jets. Low
energy charged tracks found in a jet were detached one by one until a unit charged jet with 1 or 3
prong charged multiplicity was obtained. Once a tau jet pair was found, the kinematics of the tau jet
pair were reconstructed assuming that the visible tau decay products and neutrinos were collinear, and
that the missing momentum of the event was generated only by the neutrinos from the tau decays.
Following the reconstruction of the two τ jets, qq̄ jets were reconstructed by clustering the remaining
particles with the Durham jet algorithm. Variables such as jet mass, energy, and production angle
were used together with particle multiplicities and the impact parameters of tracks from τ jets to
select Zh → qq̄τ+τ− events. The efficiency for signal selection was about 0.24 and the S/N was
1.85. With an integrated luminosity of 250 fb−1, the signal significance was 25.8σ

If we combine the results for Z → l+l− and Z → qq̄, the significance is 28.4, which corresponds
to a measurement accuracy of ∆(σ ·BR)/(σ ·BR) = 3.5%. Table 4.2 shows the extrapolation of
this result to the case of mh = 125 GeV, where it was assumed that the signal selection efficiency is
unchanged.

Table 4.2. Relative error on σ ·BR at √s = 250 GeV for h→ τ+τ− assuming mh = 125 GeV, 250 fb−1 luminosity
and beam polarization P (e−) = −80% and P (e+) = +30%. The results were obtained by scaling the errors for
mh = 120 GeV.

Z → e+e− Z → µ+µ− Z → qq̄ Combined ∆(σ·BR)
(σ·BR)

6.8σ 7.4σ 21.9σ 24.1σ 4.2%

4.3.2 500 GeV

The decay h → τ+τ− was studied at √s = 500 GeV using the ILD full simulation with mh =
125 GeV [246]. At this energy both Higgsstrahlung and WW fusion processes contribute with
comparable weight.

For the Higgsstrahlung process e+e− → Zh → qq̄h, methods similar to those used at √s =
250 GeV were employed. A signal efficiency of 21.0% and a precision of ∆(σZH ·BR)

σZH ·BR = 5.4% were
obtained for -80%/+30% e−/e+ polarization and 500 fb−1 luminosity. Further improvement is
expected by including the Z → `¯̀ mode.

In the WW fusion case e+e− → νeν̄eh → νeν̄eτ
+τ−, a jet with mass less than 2 GeV was

considered a τ jet. The most energetic τ+ and τ− were combined as the Higgs boson, and cuts were
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applied to the tau pair mass and event missing energy. A signal efficiency of 25% and a precision of
∆(σνeν̄eh·BR)
σνeν̄eh·BR

= 9.0% were obtained for -80%/+30% e−/e+ polarization and 500 fb−1 luminosity.
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Chapter 5
Cross Section Times Branching Ratio
Measurements II

5.1 h→ ZZ∗

A full simulation study of the decay h→ ZZ∗ has been performed using the process e+e−→ Zh→
ZZZ∗ at √s =250 GeV. This decay has a SM branching ratio of 2.7% given the Higgs mass of
125 GeV. The final state is characterized by two on-shell Z bosons and one off-shell Z boson, leading
to a variety of combinations of jets, isolated leptons and missing energy. The analysis is directed
toward topologies where the Z opposite the Higgs boson decays in any manner Z → q, l, ν, while the
Higgs decays without missing energy, h→ ZZ∗ → qq̄ or l+l− , l = e, µ. The datasets used for this
analysis are shown in Table 5.1.

5.1.1 Event reconstruction for h→ ZZ∗

Events are classified as 6-jet or 4-jet, depending on whether the visible energy in the event is greater
or less than 140 GeV; here the term “jet” can also refer to an isolated electron or muon.

In the low visible energy signal events we expect a 4-jet topology if the Z and Z∗ decay visibly.
One pair of jets must have a mass consistent with the Z mass. Events that have opposite signed
electrons or muons with a mass consistent with the Z mass are unlikely to come from the WW
background. Because of large missing energy and momentum from the invisible Z decay, it is unlikely
that the reconstructed Z bosons are back-to-back and so we cut on the angle between them. Cutting
on the number of tracks helps to remove much of the two-photon background.

The high visible energy signal events are largely true six jet events with all Z bosons decaying
visibly. Backgrounds that come from ZZ and WW decays can be cut using the Durham jet clustering
y24 and y56 variables. All pairs of jets are tried for the pair most consistent with the mass of the Z.
Then from the remaining jets, the next pair most consistent with the mass of the Z is found and
the remaining pair is taken as coming from the Z∗. Each Z is then paired with the Z∗ to see which
one gives a mass most consistent with coming from a 125 GeV Higgs. The analysis then proceeds
similarly to the 4 jet analysis using this pair of ZZ∗.

Before applying an MVA selection, preselection cuts are applied separately for Evis<140 GeV and
Evis>140 GeV. The preselection cuts exclude regions only where there is almost no signal. Events are
preselected based on the Higgs topology being studied using the criteria shown in Table 5.2.

Table 5.1. Simulated data samples used for the νeνeh analysis.

Process P (e−)/P (e+) NEvents

f+f−h h→ ZZ∗ +80%/-30% 120,012
All SM background mix +80%/-30% 2,058,374
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Table 5.2. Overview of the preselections for the different Higgs decay modes. The cuts as well as the efficiencies
for signal and background events are shown.

Higgs decay Preselection cuts Signal eff. Background eff.

h→ ZZ∗(Evis < 140GeV )

25 < pTvis < 70 GeV
95. < Mhiggs

vis < 140. GeV
| cos(θjet)| < 0.90
NPFO > 5
y34 > 0.
EZ > 120GeV

h→ ZZ∗(Evis > 140GeV )

90. < Mhiggs
vis < 160. GeV

| cos(θjet)| < 0.90
NPFO > 5
y34 > 0.
EZ > 120GeV
|thrust| ¡ 0.98

Both 77% 1.5× 10−2

5.1.2 Multi-Variate Analysis

After the preselection, multivariate methods, as implemented in TMVA, are then used to maximize the
significance (S/

√
S +B) of the selection. They are trained using 50% of the signal and background

events and done separately for the different polarizations and integrated luminosities. The cuts on
the Fisher discriminant which maximize the significance for each decay mode are used to obtain the
final results. The input variables for the multivariate methods are:

• visible mass of the event

• the visible energy, mass and transverse momentum

• B-Likeness from b-tag flavor tagging values

• C-likeness from c-tag flavor tagging values

• Number of High Energy Electrons

• Higgs Mass = mass of the reconstructed ZZ∗

• reconstructed Z energy

• reconstructed Z∗ energy

• cosine of the reconstructed Z polar angle

• cosine of the reconstructed Z∗ polar angle

• reconstructed Z mass

• reconstructed Z∗ mass

• the angle between the reconstructed Z and Z∗ in the plane perpendicular to the beam axis.

• the event thrust magnitude

• number Charged Tracks

• number of identified electrons

• number of identified muons

• Durham jet clustering y34 value

• Durham jet clustering y56 value

• lepton pair (PDG ID1 = -ID2) mass closest to m(Z)
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5.1 h→ ZZ∗

• jet pair mass closest to m(W)

• sum of the absolute differences of the best W jet pair mass w.r.t. m(W)
The flavor tagging is used as implemented in the LCFIPlus package which uses boosted decision

trees on vertexing quantities to determine b-tag and c-tag probabilities for bottom and charm jets
respectively. It is trained using samples of four-jet events from ZZ∗ → bb, cc and qq at √s =
350 GeV and the tagging is accordingly applied to all signal and background samples.
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Figure 5.1. Rejection of background vs. signal for selecting Higgs boson decays to ZZ∗ from the BDT, BDTG,
Fisher, Likelihood and CUTS multivariate methods.

The performance of the various MVA methods is shown in Figure 5.1. It is found that the BDT
method significantly out performs the other methods. Plots showing the efficiency and significance
curves vs. cuts on the BDT output are shown in Figure 5.2.

The composition of the samples of events passing all selections of the analysis are shown in
Table 5.3 for the polarization P(e−) = +80%, P(e+) = -30% and 250 fb−1. The fraction of events
passing all selections is 10.8% for the signal and 0.0008% for the background. The significance of the
signal after the preselection is 1.0. After applying the cut on the BDT output, the significance is 5.6.

Table 5.3. Composition of the events passing all analysis selections for the polarizations P(e−) = +80%, P(e+) =
-30% and an integrated luminosity of 250 fb−1 collected by SiD at a center of mass energy of 250 GeV.

h→ ZZ∗

(%)
e+e− → 2 fermions 50
e+e− → 4 fermions 462
e+e− → 6 fermions 0
γγ → X 0
γe+ → X 0
e−γ → X 0
qqh→ ZZ∗ 68
eeh, µµh→ ZZ∗ 24
ττh→ ZZ∗ 3
ννh→ ZZ∗ 49

105



5 Cross Section Times Branching Ratio Measurements II
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Figure 5.2. The multi-variate BDT output for the signal (h → ZZ∗) and background for the training samples and
test samples (points).

5.1.3 Results for f+f−h→ ZZ∗

The uncertainties on the cross sections times Higgs branching fractions, ∆(σ ×BR), are determined
from the numbers of signal and background events passing each selection. For 250 fb−1 of e+e−

P(e−) = +80%, P(e+) = -30% 250 GeV collisions in the SiD detector this benchmark indicates that
a precision of 18% can be obtained.

5.2 h→ γγ

Fast Monte Carlo studies of e+e− → Zh → ff̄γγ, f = q, ν at √s = 250 GeV [247] and
e+e− → νν̄h → νν̄γγ at √s = 1000 GeV [248] have been supplemented recently with a full
simulation study of e+e− → ff̄h→ ff̄γγ, f = q, ν at √s = 250 GeV and 500 GeV [249]. These
studies indicate that the ILC can measure σ ·BR(h→ γγ) with an accuracy of 34% using e+e− → Zh

at √s = 250 GeV assuming 250 fb−1. The process e+e− → νν̄h→ νν̄γγ yields errors of 23% for
500 fb−1 at √s = 500 GeV and 8.5% for 1000 fb−1 at √s = 1000 GeV.
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5.3 h→ µ+µ−

1 1 

µ µ+ −( ) (GeV)M

1 1 
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Figure 5.3. Muon pair mass for e+e− → νν̄h → νν̄µ+µ− at √s = 1000 GeV (left) and for all Standard Model
background (right) following all cuts. The plots are normalized to 1000 fb−1 luminosity.

5.3 h→ µ+µ−

The decay h → µ+µ− has been studied using e+e− → Zh → qq̄µ+µ− at √s = 250 GeV [225]
and e+e− → νν̄h → νν̄µ+µ− at √s = 1000 GeV [5]. This decay has a SM branching ratio
of 0.02%. The very small event rate at the ILC can be compensated somewhat by the excellent
δ(1/pT) ∼ 2–5× 10−5 (GeV/c)−1 charged particle momentum resolution of the ILD and SiD detectors.

At √s = 250 GeV the largest background is e+e− → ZZ → qq̄µ+µ−. Following all cuts an
error of 91% for σ · BR(h → µ+µ− was obtained in Ref. [225] for 250 fb−1 assuming a 120 GeV
Higgs mass. Scaling to a Higgs mass of 125 GeV this error becomes 100%.

Figure 5.3 shows the reconstructed muon pair mass distributions for signal and background after
all cuts at √s = 1000 GeV. At this center of mass energy the largest backgrounds following all cuts
are e+e− → νeν̄eµ

+
µ
−, e+e− → W+W− → νµν̄µµ

+
µ
−, and γγ → W+W− → νµν̄µµ

+
µ
−. With

1000 fb−1 an error of 31% was obtained in Ref. [5].

5.4 Invisible Higgs Decays

The h decay to invisible final states, if any, can be measured by looking at the recoil mass under the
condition that nothing observable is recoiling against the Z boson. Higgs portal models predict such
decays and provide a unique opportunity to access dark matter particles [250]. The main background
is e+e− → ZZ followed by one Z decaying into a lepton pair or quark pair, and the other into
a neutrino pair. With an integrated luminosity of 250 fb−1 at √s = 250 GeV, the ILC can set a
95% CL limit on the invisible branching ratio of 4.8% using the golden Z → µ+µ− mode alone [251].
Using other modes including Z → qq̄, we can improve this significantly to 0.9% [252]. Assuming a
luminosity of 1150 fb−1 at √s = 250 GeV the 95% CL limit is 0.4%
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Figure 5.5. Three diagrams contributing to the e+e− → tt̄h process. The h-off-t or t̄ diagrams, (a) and (b),
contain the top Yukawa coupling while the h-off-Z diagram (c) does not.

5.5 Top Yukawa Coupling Measurement

The cross section for the process e+e− → tt̄h is significantly enhanced near the threshold due to
the bound-state effects between t and t̄ [253, 254, 255, 256, 257, 258, 259]. The effect is made
obvious in the right-hand plot of Fig. 5.4. This enhancement implies that the measurement of the
top Yukawa coupling might be possible already at √s = 500 GeV [260]. A serious simulation study
at √s = 500 GeV was performed for the first time, with the QCD bound-state effects consistently
taken into account for both signal and background cross sections, in [261].

The e+e− → tt̄h reaction takes place through the three diagrams shown in Fig. 5.5. As shown
in Fig. 5.4 (left), the contribution from the irrelevant h-off-Z diagram is negligible at √s = 500 GeV,
thereby allowing us to extract the top Yukawa coupling gt by just counting the number of signal
events. By combining the 8-jet and 6-jet-plus-lepton modes of e+e− → tt̄h followed by h → bb̄,
the analysis of [261] showed that a measurement of the top Yukawa coupling to ∆gt/gt = 14.1% is
possible for mh = 120 GeV with polarized electron and positron beams of (Pe− , Pe+) = (−0, 8,+0.3)
and an integrated luminosity of 500 fb−1. This result obtained with a fast Monte Carlo simulation
has just recently been corroborated by a full simulation [262]. When extrapolated to mh = 125 GeV,
and taking into account a recent analysis improvement, the corresponding expected precision would
be ∆gt/gt = 14.0%.

It should be noted that a small increase in the center of mass energy beyond √s = 500 GeV can
increase the cross section for e+e− → tt̄h significantly, as can be seen in Fig. 5.4. By increasing
the center of mass energy to √s = 520 GeV, for example, the cross section for e+e− → tt̄h can be
doubled and hence the precision can be improved to 9.9% assuming 500 fb−1.

The 14% accuracy on the top quark Yukawa coupling expected at √s = 500 GeV can be
significantly improved by the data taken at 1000 GeV, thanks to the larger cross section and the less

108



5.6 Higgs Self Coupling Measurement

Figure 5.6
Relevant diagrams
containing the triple
Higgs coupling for
the two processes:
e+e− → Zhh (left)
and e+e− → νeνehh.
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Cross sections for
the two processes
e+e− → Zhh (left)
and e+e− → νeνehh
as a function of √s for
mh = 120 GeV.

Center of Mass Energy / GeV
400 600 800 1000 1200 1400

C
ro

ss
 S

ec
tio

n 
/ f

b

0

0.05

0.1

0.15

0.2

0.25

0.3

 ZHH→ - + e+e
HH  (WW fusion)νν → - + e+e

HH  (Combined)νν → - + e+e

M(H) = 120 GeV

background from e+e− → tt̄. Fast simulations at √s = 800 GeV showed that we would be able
to determine the top Yukawa coupling to 6% for mh = 120 GeV, given an integrated luminosity of
1 ab−1 and residual background uncertainty of 5% [263, 264]. As described in the Detector Volume of
the ILC TDR [5] full simulations just recently completed by SiD and ILD show that the top Yukawa
coupling can indeed be measured to a statistical precision of 3.1% for mh = 125 GeV with 1 ab−1.

With luminosities of 1600 fb−1 at 500 GeV and 2500 fb−1 at 1000 GeV, the statistical precision
can be improved to 2.0%.

5.6 Higgs Self Coupling Measurement

The triple Higgs boson coupling can be studied at the ILC through the processes e+e− → Zhh and
e+e− → νeνehh. The relevant Feynman diagrams are shown in Fig. 5.6 [72]. The cross sections for
the two processes are plotted as a function of √s for mh = 120 GeV in Fig. 5.7. The cross section
reaches its maximum of about 0.18 fb at around √s = 500 GeV, which is dominated by the former
process.

A full simulation study of the process e+e− → Zhh followed by h→ bb̄ at √s = 500 GeV has
recently been carried out using the ILD detector [265]. From the combined result of the three channels
corresponding to different Z decay modes, Z → l+l−, νν̄, and qq̄, it was found that the process can be
detected with an excess significance of 4.5-σ and the cross section can be measured to ∆σ/σ = 0.30
for an integrated luminosity of 1.6 ab−1 with beam polarization (Pe− , Pe+) = (−0, 8,+0.3). Unlike
the e+e− → tt̄h case, however, the contribution from the background diagrams without the self-
coupling is significant and the relative error on the self-coupling λ is ∆λ/λ = 0.49 with a proper
event weighting to enhance the contribution from the self-coupling diagram. When extrapolated to
mh = 125 GeV, taking into account a 20% relative improvement expected from a recent preliminary
full simulation result including hh→ bb̄WW ∗ mode, the precision would be improved to 46%.

At √s = 1000 GeV, the e+e− → νν̄hh process will become significant [266]. The cross
section for this process is only about 0.07 fb−1, but the sensitivity to the self-coupling is potentially
higher since the contribution from the background diagrams is smaller, leading to the relation
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5 Cross Section Times Branching Ratio Measurements II

Table 5.4. Expected accuracies for cross section and cross section times branching ratio measurements for the
125 GeV h boson assuming you run 3× 107 s at the baseline differential luminosity for each center of mass energy. For
invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

√
s and L 250 fb−1 at 250 GeV 500 fb−1 at 500 GeV 1 ab−1 at 1 TeV

(Pe− , Pe+ ) (-0.8,+0.3) (-0.8,+0.3) (-0.8,+0.2)
Zh νν̄h Zh νν̄h tt̄h Zhh νν̄h tt̄h νν̄hh

∆σ/σ 2.6% - 3.0 - 42.7% 26.3%
BR(invis.) < 0.9 % - - - -
mode ∆(σ ·BR)/(σ ·BR)
h→ bb̄ 1.2% 10.5% 1.8% 0.7% 28% 0.5% 6.0%
h→ cc̄ 8.3% - 13% 6.2% 3.1%
h→ gg 7.0% - 11% 4.1% 2.3%
h→WW ∗ 6.4% - 9.2% 2.4% 1.6%
h→ τ+τ− 4.2% - 5.4% 9.0% 3.1%
h→ ZZ∗ 18% - 25% 8.2% 4.1%
h→ γγ 34% - 34% 23% 8.5%
h→ µ+µ− 100% - - - 31%

Table 5.5. Expected accuracies for cross section and cross section times branching ratio measurements for the
125 GeV h boson assuming you run 3× 107 s at the sum of the baseline and upgrade differential luminosities for each
center of mass energy. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on
the branching ratio.

√
s and L 1150 fb−1 at 250 GeV 1600 fb−1 at 500 GeV 2.5 ab−1 at 1 TeV

(Pe− , Pe+ ) (-0.8,+0.3) (-0.8,+0.3) (-0.8,+0.2)
Zh νν̄h Zh νν̄h tt̄h Zhh νν̄h tt̄h νν̄hh

∆σ/σ 1.2% - 1.7 - 23.7% 16.7%
BR(invis.) < 0.4 % - - - -
mode ∆(σ ·BR)/(σ ·BR)
h→ bb̄ 0.6% 4.9% 1.0% 0.4% 16% 0.3% 3.8%
h→ cc̄ 3.9% - 7.2% 3.5% 2.0%
h→ gg 3.3% - 6.0% 2.3% 1.4%
h→WW ∗ 3.0% - 5.1% 1.3% 1.0%
h→ τ+τ− 2.0% - 3.0% 5.0% 2.0%
h→ ZZ∗ 8.4% - 14% 4.6% 2.6%
h→ γγ 16% - 19% 13% 5.4%
h→ µ+µ− 46.6% - - - 20%

∆λ/λ ' 0.85×(∆σνν̄hh/σνν̄hh), as compared to ∆λ/λ ' 1.8×(∆σZhh/σZhh) for the e+e− → Zhh

process at 500 GeV. The measurement of the self-coupling has been studied at 1 TeV with full simulation.
That analysis is described in the Detector Volume of the ILC TDR [5]. The result, for 2.5 ab−1 with
(Pe− , Pe+) = (−0.8,+0.2), is ∆λ/λ ' 0.16 for mh = 125 GeV. This has recently been improved to
13% with the inclusion of the hh→ bb̄WW ∗ mode [267]. Further improvements would be possible
by adding more decay modes and/or improvements in jet clustering 1.

5.7 Cross Section Times Branching Ratio Summary

The accuracies for all cross section and σ ·BR measurements considered in this paper are summarized
in Table 5.4 and Table 5.5. Table 5.4 shows the accuracies assuming you run 3× 107 s at the baseline
differential luminosity for each of the center of mass energies 250, 500 and 1000 GeV. Table 5.5 gives
the accuracies when you add the luminosities of Table 5.4 to 3× 107 s times the upgraded differential
luminosities at each of the three center of mass energies.

1With perfect jet clustering we expect a 40% relative improvement in the self-coupling precision.
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Chapter 6
Higgs Couplings, Total Width and
Branching Ratios

6.1 Model Independent Determination of Higgs Couplings

The sigma times branching ratio measurements in the previous chapters imply a very high level of
precision for the various Higgs boson couplings. To quantify this we perform a global fit of the Higgs
boson couplings and total Higgs width using all the available cross section and cross section times
branching ratio data.

Before discussing the global fit in detail, it would be helpful to show an example explaining how
we get the absolute couplings and Higgs total width. Let’s look at the following four independent
measurements:

Y1 = σZH = F1 · g2
HZZ

Y2 = σZH × Br(H → bb̄) = F2 ·
g2
HZZg

2
Hbb̄

ΓT

Y3 = σνν̄H × Br(H → bb̄) = F3 ·
g2
HWW g

2
Hbb̄

ΓT

Y4 = σνν̄H × Br(H →WW ∗) = F4 ·
g4
HWW

ΓT
,

where ΓT is the Higgs total width, gHZZ , gHWW , and gHbb̄ are the couplings of the Higgs to ZZ,
WW , and bb̄, respectively, and F1, F2, F3, F4 are calculable quantities. It is straightforward to get
the couplings with the following steps:

i.) from the measurement Y1 we can get the coupling gHZZ .

ii.) from the ratio Y2/Y3 we can get the coupling ratio gHZZ/gHWW .

iii.) with gHZZ and gHZZ/gHWW , we can get gHWW .

iv.) once we know gHWW , we can get the Higgs total width ΓT from the measurement Y4

v.) from the ratio Y3/Y4 we get the ratio gHbb/gHWW , from which we obtain gHbb.
This example already gave quite clear synergy between the two main Higgs production channels.

The best energy to investigate the Higgsstrahlung production e+e− → ZH is around 250 GeV,
however the e+e− → νν̄H at 250 GeV is very small. WW-fusion production will be fully open at 500
GeV with cross section one order of magnitude larger. This is one essential motivation to go to higher
energy after running at 250 GeV.

We discuss in detail the model independent fit of the Higgs couplings for the ILC(1000) luminosity
scenario. For this scenario the 33 independent σ × Br measurements in Table 5.4 are used as
experimental input. The σ×Br measurements are labelled with with Yi, i = 1, 2, ..., 33. The predicted
values of these measurements as a function of the Higgs couplings are given by Y ′i = Fi · g

2
HZZg

2
HXX

ΓT ,
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Table 6.1. Expected accuracies ∆gi/gi for Higgs boson couplings for a completely model independent fit assuming
theory errors of ∆Fi/Fi = 0.1%

Mode ILC(250) ILC(500) ILC(1000) ILC(LumUp)
γγ 18 % 8.4 % 4.0 % 2.4 %
gg 6.4 % 2.3 % 1.6 % 0.9 %
WW 4.8 % 1.1 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 1.0 % 0.5 %
tt̄ – 14 % 3.1 % 1.9 %
bb̄ 5.3 % 1.6 % 1.3 % 0.7 %
τ+τ− 5.7 % 2.3 % 1.6 % 0.9 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %
µ+µ− 91 % 91 % 16 % 10 %
ΓT (h) 12 % 4.9 % 4.5 % 2.3 %

Table 6.2. Expxected accuracies ∆gi/gi for Higgs boson couplings for a completely model independent fit assuming
theory errors of ∆Fi/Fi = 0.5%

Mode ILC(250) ILC(500) ILC(1000) ILC(LumUp)
γγ 18 % 8.4 % 4.0 % 2.4 %
gg 6.4 % 2.3 % 1.6 % 0.9 %
WW 4.9 % 1.2 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 1.0 % 0.5 %
tt̄ – 14 % 3.2 % 2.0 %
bb̄ 5.3 % 1.7 % 1.3 % 0.8 %
τ+τ− 5.8 % 2.4 % 1.8 % 1.0 %
cc̄ 6.8 % 2.8 % 1.8 % 1.1 %
µ+µ− 91 % 91 % 16 % 10 %
ΓT (h) 12 % 5.0 % 4.6 % 2.5 %

or Y ′i = Fi · g
2
HWW g

2
HXX

ΓT , Y ′i = Fi · g
2
Httg

2
HXX

ΓT , where XX means some specific decay particle from
Higgs and Fi is some factor corresponding to the decay. In addition we have one absolute cross
section measurement Y34 = σZH which can be predicted as Y ′34 = F34 · g2

HZZ . In total we have
34 independent measurements and 10 fit parameters consisting of 9 fundamental couplings HZZ,
HWW , Hbb̄, Hcc̄, Hgg, Hτ+τ−, Hµµ, Htt and Hγγ, and the Higgs total width ΓT .

The factors Fi can be written

Fi = SiGi where Si = (σZH
g2
Z

) , (σνν̄H
g2
W

) , or (σtt̄H
g2
t

) , and Gi = (Γi
g2
i

) . (6.1)

These are theoretical calculations with parametric and theoretical uncertainties. Because the relevant
quantities are ratios of cross sections and partial widths to couplings squared, the total theory errors
for Si, and particularly Gi, should be less than the total theory errors for the corresponding cross
sections and partial widths. We believe that a total theory error of 0.5% or less can be achieved for
the Fi parameters at the time of ILC running. We quote coupling results assuming total theory errors
of ∆Fi/Fi = 0.1% and ∆Fi/Fi = 0.5%.

The fitted couplings and width are obtained by minimizing the chi-square function χ2 defined by

χ2 =
34∑
i=1

(Yi − Y
′

i

∆Yi
)2 , (6.2)

where ∆Yi is the square root of the sum in quadrature of the error on the measurement Yi and the
total theory error for Y ′i . The results for theory errors of ∆Fi/Fi = 0.1% and ∆Fi/Fi = 0.5% are
summarized in Table 6.1 and Table 6.2, respectively.
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6.2 Model Independent Determination of Higgs Cross Sections and Higgs Branching Ratios

Table 6.3. Summary of expected accuracies for the three cross sections and eight branching ratios obtained from an
eleven parameter global fit of all available data.

ILC(250) ILC500 ILC(1000) ILC(LumUp)
process ∆σ/σ
e+e− → ZH 2.6 % 2.0 % 2.0 % 1.0 %
e+e− → νν̄H 11 % 2.3 % 2.2 % 1.1 %
e+e− → tt̄H - 28 % 6.3 % 3.8 %
mode ∆Br/Br
H → ZZ 19 % 7.5 % 4.2 % 2.4 %
H →WW 6.9 % 3.1 % 2.5 % 1.3 %
H → bb̄ 2.9 % 2.2 % 2.2 % 1.1 %
H → cc̄ 8.7 % 5.1 % 3.4 % 1.9 %
H → gg 7.5 % 4.0 % 2.9 % 1.6 %
H → τ+τ− 4.9 % 3.7 % 3.0 % 1.6 %
H → γγ 34 % 17 % 7.9 % 4.7 %
H → µ+µ− 100 % 100 % 31 % 20 %

6.2 Model Independent Determination of Higgs Cross Sections and Higgs Branching Ratios

Alternatively, in the χ2 of our global fit, we can define the fit parameters to be the three cross
sections σZH , σνν̄H , σtt̄H , and the eight branching ratios Br(H → bb̄), Br(H → cc̄), Br(H → gg),
Br(H → WW ∗), Br(H → ZZ∗), Br(H → τ+τ−), Br(H → µ+µ−), Br(H → γγ). Taking again
the ILC(1000) luminosity scenario as an example, we use the 34 independent cross section and cross
section times branching ratio measurements from Table 5.4 and appropriately redefined Y ′i functions
to solve for the 11 parameters through the minimization of an alternate χ2 function. The cross section
and branching ratio accuracies for all four of our energy and luminosity scenarios are summarized in
Table 6.3.

6.3 Model-Dependent Coupling Parameterizations

While the couplings of the Higgs boson and the total Higgs width can be determined at the ILC
without model assumptions, it is sometimes useful to extract couplings from ILC data within the
context of certain models. Such analyses makes it easier to compare the experimental precision of
the ILC with other facilities, such as the LHC, that cannot determine Higgs couplings in a model
independent manner.

6.3.1 Benchmark Parameterizations of the LHC HXSWG

The LHC Higgs Cross Section Working Group (HXSWG) has proposed a series of benchmark Higgs
coupling parameterizations [161, 206]. We take as an example the parameterization with seven free
parameters κg, κγ , κW , κZ , κb, κt, κτ and a dependent parameter κH(κi) described in Section 10.3.7
of Ref. [206]. In this parameterization 2nd generation fermion Higgs couplings are related to 3rd
generation couplings via κc = κt, κµ = κτ , etc., and the total Higgs width is assumed to be the sum
of the partial widths for all Standard model decays. We implement these boundary conditions by
adding two new terms to our model independent chisquare function:

χ2 =
i=33∑
i=1

(Yi − Y
′

i

∆Yi
)2 + ( ξct

∆ξct
)2 + ( ξΓ

∆ξΓ
)2 (6.3)

where

ξct = κc − κt = gc
gSMc

− gt
gSMt

, ξΓ = ΓT −
9∑
i=1

Γi , and Γi = Gi · g2
i . (6.4)
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6 Higgs Couplings, Total Width and Branching Ratios

Table 6.4. Expected accuracies ∆gi/gi for Higgs boson couplings and the total width ΓT (h) using the seven param-
eter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] assuming all theory errors are
given 0.1%.

Mode ILC(250) ILC(500) ILC(1000) ILC(LumUp)
γγ 17 % 8.3 % 3.8 % 2.3 %
gg 6.1 % 2.0 % 1.1 % 0.7 %
WW 4.7 % 0.4 % 0.3 % 0.2 %
ZZ 0.7 % 0.5 % 0.5 % 0.3 %
tt̄ 6.4 % 2.5 % 1.3 % 0.9 %
bb̄ 4.7 % 1.0 % 0.6 % 0.4 %
τ+τ− 5.2 % 1.9 % 1.3 % 0.7 %
ΓT (h) 9.0 % 1.7 % 1.1 % 0.8 %

Table 6.5. Expected accuracies ∆gi/gi for Higgs boson couplings and the total width ΓT (h) using the seven param-
eter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] and assuming all theory errors
are 0.5%.

Mode ILC(250) ILC(500) ILC(1000) ILC(LumUp)
γγ 17 % 8.3 % 3.8 % 2.3 %
gg 6.1 % 2.0 % 1.2 % 0.7 %
WW 4.7 % 0.5 % 0.3 % 0.2 %
ZZ 0.8 % 0.5 % 0.5 % 0.3 %
tt̄ 6.4 % 2.6 % 1.4 % 0.9 %
bb̄ 4.7 % 1.0 % 0.6 % 0.4 %
τ+τ− 5.2 % 2.0 % 1.3 % 0.8 %
ΓT (h) 9.0 % 1.8 % 1.1 % 0.9 %

The error ∆ξct is obtained by propagating the total theory errors on gSMc and gSMt , while the error
∆ξΓ is obtained by propagating the errors on Gi:

∆ξΓ = ΓSM

[∑
i

(∆Gi
Gi

)2(BRi)2

] 1
2

≈ ΓSM
∆G
G

[∑
i

(BRi)2

] 1
2

≈ 0.63 ΓSM
∆G
G

. (6.5)

The results for the seven parameters in the HXSWG parameterization are shown in Table 6.4 and
Table 6.5 assuming all theory errors are given by ∆ξct = ∆Gi/Gi = ∆Fi/Fi = 0.1% and 0.5%,
respectively.
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Table 6.6. Expected accuracies for Higgs boson couplings under the assumption of Eqn. (6.6) and assuming LHC
results with 300 fb−1 are combined with ILC results.

LHC(300 fb−1) LHC(300 fb−1) LHC(300 fb−1) LHC(300 fb−1)
Mode +ILC(250) +ILC(500) +ILC(1000) +ILC(LumUp)
γγ 4.8 % 4.2 % 3.0 % 2.0 %
gg 3.8 % 1.9 % 1.1 % 0.7 %
WW 1.9 % 0.2 % 0.1 % 0.1 %
ZZ 0.4 % 0.3 % 0.3 % 0.1 %
tt̄ 12.0 % 9.6 % 2.9 % 1.8 %
bb̄ 2.8 % 1.0 % 0.6 % 0.3 %
τ+τ− 3.3 % 1.8 % 1.2 % 0.7 %
cc̄ 5.1 % 2.6 % 1.4 % 0.8 %
ΓT (h) 4.7 % 1.6 % 0.9 % 0.5 %

6.3.2 Higgs Couplings to W and Z Bounded by SM Couplings

A different method to fit for Higgs couplings using LHC data is given in Ref. [268], where an effort is
made to minimize the model dependence of the coupling fit. Under rather general conditions [28],
each scalar with a vev makes a positive contribution to the masses of the W and Z. Since the Higgs
couplings to the W and Z also arise from the vev, this implies that the coupling of any single Higgs
field is bounded above by the coupling that would give the full mass of the vector bosons. This
implies

g2(hWW ) ≤ g2(hWW )|SM and g2(hZZ) ≤ g2(hZZ)|SM (6.6)

Then the measurement of the σ ·BR for a process such as WW fusion to h with decay to WW ∗,
which is proportional to g4(hWW )/ΓT , puts an upper limit on ΓT . This constraint was first applied
to Higgs coupling fitting by Dührssen et al. [162]. In the literature, this constraint is sometimes
applied together with the relation

g2(hWW )/g2(hZZ) = cos2 θw . (6.7)

The relation (6.7), however, requires models in which the Higgs is a mixture of SU(2) singlet and
doublet fields only, while (6.6) is more general [269]. An estimate of Higgs coupling errors from the
LHC under the assumption of Eqn. (6.6) can be found in Ref. [268].

We have carried out a global fit to the ILC measurements under the constraint (6.6) with 9
parameters representing independent Higgs boson couplings to WW , ZZ, bb̄, gg, γγ, τ+τ−, cc̄, tt̄,
and the total Higgs width ΓT (h). The results for the errors on Higgs couplings are shown in Table 6.6.
The four columns represent the combination of results from LHC (300 fb−1, 1 detector) [268] and
our four ILC luminosity scenarios.

6.4 Effective Higgs Operators

The h→WW ∗ decay provides an interesting opportunity to study its differential width and probe
the Lorentz structure of the hWW coupling through angular analyses of the decay products. The
relevant part of the general interaction Lagrangian, which couples the Higgs boson to W bosons in a
both Lorentz- and gauge-symmetric fashion, can be parameterized as

LhWW = 2m2
W

(
1
v

+ a

Λ

)
h W+

µ W
−µ + b

Λh W
+
µνW

−µν + b̃

Λh ε
µνστW+

µνW
−
στ , (6.8)

where W±µν is the usual gauge field strength tensor, εµνστ is the Levi-Civita tensor, v is the VEV of
the Higgs field, and Λ is a cutoff scale1. The real dimensionless coefficients, a, b, and b̃, are all zero

1 The Lagrangian (6.8) is not by itself gauge invariant; to restore explicit gauge invariance we must also include the
corresponding anomalous couplings of the Higgs boson to Z bosons and photons.
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Figure 6.1. Distribution of the angle φ between two decay planes of W and W ∗ from the decay H → WW ∗ → 4j
with the inclusion of anomalous couplings [270]. (a) The SM curve along with that for a = 1, b = b̃ = 0, Λ = 1 TeV;
the position of the minimum is the same for both distributions. (b) The SM result with the cases b̃ = ±5, a = b =
0, Λ = 1 TeV; the position of the minimum is now shifted as discussed in the text. From [270].

Figure 6.2
Probability contours
for ∆χ2 = 1, 2.28, and
5.99 in the a-b plane,
which correspond to
39%, 68%, and 95%
C.L., respectively.
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in the Standard Model and measure the anomaly in the hWW coupling, which arise from some new
physics at the scale Λ. The coefficient a stands for the correction to the Standard Model coupling.
The coefficients b and b̃ parametrize the leading dimension-five non-renormalizable interactions and
corresponding to (E ·E −B ·B)-type CP -even and (E ·B)-type CP -odd contributions. The a
coefficient, if nonzero, would modify just the normalization of the Standard Model coupling, while the
b and b̃ coefficients would change the angular correlations of the decay planes. This effect is shown in
Fig. 6.1 [270]. Nonzero b and b̃ would also modify the momentum distribution of the W boson in the
Higgs rest frame. Simultaneous fits to pW and φplane result in the contour plots in Figs.6.2 and 6.3.
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Figure 6.3
Contours similar to
Fig. 6.2 plotted in the
a-b̃ plane.
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Chapter 7
Non-Minimal Higgs Models

7.1 Direct Production of Non-Minimal Higgs Bosons

The discovery of additional Higgs bosons such as H, A, H± and H±± would give direct evidence
for extended Higgs sector. As discussed in Section 1.3.7 there are many possibilities for the decay
branching ratios of these particles. The ongoing searches at LHC rely on specific production and
decay mechanisms that occupy only a part of the complete model parameter space. At the ILC,
the extended Higgs bosons are produced in electroweak pair production through cross sections that
depend only on the SU(2) × U(1) quantum numbers and the mixing angles. Thus, the reach of
the ILC is typically limited to masses less than √s/2, but it is otherwise almost uniform over the
parameter space.

7.1.1 Neutral Higgs pair production at ILC

The signals from HA production in the bbbb and bbττ channels, in the context of the MSSM (Type-II
2HDM), was carried out in the studies of Ref. [271, 272]. A rather detailed detector simulation was
performed in [272], including all the SM backgrounds at √s = 500, 800 and 1000 GeV. Using a
kinematical fit which imposes energy momentum conservation and under the assumed experimental
conditions, a statistical accuracy on the Higgs boson mass from 0.1 to 1 GeV is found to be achievable.
The topological cross section of e+e− → HA→ bbbb (e+e− → HA→ ττbb) could be determined
with a relative precision of 1.5% to 7% (4% to 30%). The width of H and A could also be determined
with an accuracy of 20% to 40%, depending on the mass of the Higgs bosons. Figure 7.1 shows,
on the left, the τ+τ− invariant mass obtained by a kinematic fit in e+e− → HA → bb̄τ+τ− for
mA = 140 GeV and mH = 150 GeV, for √s = 500 GeV and 500 fb−1 [272].

The τ+τ−τ+τ− and µ+µ−τ+τ− final states would be dominant for the type X (lepton specific)
2HDM. When √s = 500 GeV, assuming an integrated luminosity of 500 fb−1, one expects to collect
16,000 (18,000) τ+τ−τ+τ− events in the type X (type II) 2HDM, and 110 (60) µ+µ−τ+τ− events
in the same models, assuming mH = mA = mH± = 130 GeV, sin(β−α) = 1 and tan β = 10. These
numbers do not change much for tan β & 3. It is important to recognize that the four-momenta
of the τ leptons can be solved by a kinematic fit based on the known center of mass energy and
momentum, by applying the collinear approximation to each set of τ lepton decay products [273, 274].
Figure 7.1 shows, on the right, the two dimensional invariant mass distribution of the τ lepton pairs
from the neutral Higgs boson decays as obtained with a simulation at 500 GeV in which the masses
of the neutral Higgs bosons are taken to be 130 GeV and 170 GeV [275].

In an extended Higgs sector with singlets, it is very common to have lighter Higgs bosons with
suppressed couplings to the Z, but which can be seen at an e+e− collider either through direct
production or by decays of the 125 GeV Higgs boson. A specific NMSSM example that has been
studied is the cascade decay h1 → aa→ (τ+τ−)(τ+τ−) at the ILC[276]. In addition to discovery,
the masses can be measured to better than 1%.
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Figure 7.1. Left: Invariant mass reconstruction from the kinematical fit in the process e+e− → HA → bb̄τ+τ−

in the Type-II (MSSM like) 2HDM for mA = 140 GeV and mH = 150 GeV at √s = 500 GeV and 500 fb−1 [272]
Right: Two dimensional distribution of ditau invariant mass in e+e− → HA → τ+τ−τ+τ− in the Type X (lepton
specific) 2HDM for mA = 170 GeV and mH = 130 GeV for √s = 500 GeV and 500 fb−1 [275].

Although the associated Higgs production process e+e− → HA is a promising one for testing
the properties of the extended Higgs sectors, the kinematic reach is restricted by mH +mA <

√
s

and is not available beyond this limit. Above the threshold of the HA production, the associated
production processes tt̄Φ, bb̄Φ and τ+τ−Φ (Φ = h,H,A) could be used [277, 278]. In particular, for
bb̄Φ and τ+τ−Φ, the mass reach is extended almost up to the collision energy. The cross sections for
these processes are proportional to the Yukawa interaction, so they directly depend on the type of
Yukawa coupling in the 2HDM structure. In MSSM or the Type II 2HDM (Type I 2HDM), these
processes are enhanced (suppressed) for large tan β values. In Type X 2HDM, only the τ+τ−H/A

channels could be significant while only bb̄H/A channels would be important in Type I and Type Y
2HDMs. These reactions can then be used to discriminate the type of the Yukawa interaction.

7.1.2 Charged Higgs boson production

At the ILC, charged Higgs bosons are produced in pairs in e+e− → H+H− [279]. The cross section is
a function only of mH± and is independent of the type of Yukawa interaction in the 2HDM. Therefore,
as in the case of the HA production, the study of the final state channels can be used to determine
the type of Yukawa interaction. When mH± > mt +mb, the main decay mode is tb in Type I, II and
Y, while in Type X the main decay mode is τν for tan β > 2. When H± cannot decay into tb, the
main decay mode is τν except in Type Y for large tan β values. For mH± < mt −mb, the charged
Higgs boson can also be studied via the decay of top quarks t→ bH± in 2HDMs except in Type X
2HDM case with tan β > 2.

In the MSSM, a detailed simulation study of this reaction has been performed for the final
state e+e− → H+H− → tb̄t̄b for mH± = 300 GeV at √s = 800 GeV [280]. The final states is 4
b-jets with 4 non-b-tagged jets. Assuming an integrated luminosity of 1 ab−1, a mass resolution of
approximately 1.5% can be achieved (Figure 7.2 (left)). The decay mode tbtb can also be used to
determine tan β, especially for relatively small values, tan β < 5), where the production rate of the
signal strongly depends on this parameter.

The pair production is kinematically limited to relatively light charged Higgs bosons with mH± <√
s/2. When mH± >

√
s/2, one can make use of the single production processes e+e− → tb̄H+,

e+e− → τ ν̄H+, e+e− →W−H+, e+e− → H+e−ν and their charge conjugates. The cross sections
for the first two of these processes are directly proportional to the square of the Yukawa coupling
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Figure 7.2. Left: Fitted charged Higgs boson mass in H+H− → (tb̄)(t̄b) in the MSSM, with mH± = 300 GeV,
measured at the ILC at CM energy 800 GeV with 1 ab−1 of data. The background is shown by the dark his-
togram [280]. Right: Differential distribution of the reconstructed Higgs mass for the signal e+e− → bt̄H+ +tb̄H− →
tt̄bb̄ and the background e+e− → tt̄g∗ → tt̄bb̄ in the MSSM or the Type II 2HDM [281].

Figure 7.3
Estimates of the 1 σ
statistical upper and
lower bounds on tanβ
from ILC measure-
ments, for an MSSM
model with mH± ∼
mA = 200 GeV, as-
suming √s = 500
GeV and 2000 fb−1

of data, from [282].
The quantity plotted
is the relative error,
∆ tanβ/ tanβ.

constants. The others are one-loop induced. Apart from the pair production rate, these single
production processes strongly depend on the type of Yukawa interaction in the 2HDM structure. In
general, their rates are small and quickly suppressed for larger values of mH± . They can be used only
for limited parameter regions where m±H is just above the threshold for the pair production with very
large or low tan β values.

In Ref. [281], a simulation study for the process e+e− → tb̄H− + bt̄H+ → 4b+ jj + `+ pmiss
T

(` = e, µ) has been done for mH± just above the pair production threshold mH± '
√
s/2. It is shown

that this process provides a significant signal of H± in a relatively small region just above √s/2, for
very large or very small values of tan β, assuming a high b-tagging efficiency. The reconstructed H+

mass distribution is shown in the right-hand side of Fig. 7.2.

121



7 Non-Minimal Higgs Models

Figure 7.4. The decay branching ratios as a function of tanβ for a fixed sin2(β − α) for h → bb̄ (black curves),
H → bb̄ (red curves), and A→ bb̄ (blue curves) in the Type-II 2HDM. From left to right, sin2(β − α) is taken to be
1, 0.99, and 0.98. The solid (dashed) curves denote the case with cos(β − α) ≤ 0 (cos(β − α) ≥ 0).

7.2 Measurements of tan β at the ILC

In multi-Higgs models, mixing angles between bosons with the same quantum numbers are important
parameters. In the CP-conserving two Higgs doublet model, there are two mixing angles α and β,
where α is introduced to diagonalize the mass matrix of the CP-even scalar states, and tan β is
defined as the ratio of vacuum expectation values of two Higgs doublets diagonalizing the charged
and CP-odd scalar states. All coupling constants associated with the Higgs bosons, i.e. the couplings
of h, H, A and H± to gauge bosons, fermions and themselves, depend on these mixing angles.

The information on sin(β − α) (cos(β − α)) can be directly extracted from the precision
measurement of the couplings of the SM-like boson h (the extra Higgs boson H) to weak gauge
bosons, hV V (HV V ). At the LHC, the SM-like coupling hV V (V V = WW and ZZ) is being
measured, and the current data indicates sin2(β − α) ' 1 within the error of order 10-20%. At the
ILC, the hWW and hZZ couplings can be measured precisely to the percent level or better.

When sin(β − α) is precisely determined, all the Yukawa couplings hff and Hff are a function
of tan β, so that one can extract tan β by precise measurements of the Yukawa interactions. The tan β
dependences in the Yukawa couplings are different for each type of Yukawa interaction [81, 82, 83, 84].
In the Type-II 2HDM, the tan β dependences are large for Yukawa interactions of H and A with down
type fermions such as Hbb Abb, Hτ+τ− and Aτ+τ− (YHbb,Abb ∼ mb tan β, YHττ,Aττ ∼ mτ tan β
), while in the Type-X (lepton specific) 2HDM the Yukawa couplings of H or A to charged leptons
are sensitive to tan β (YHττ,Aττ ∼ mτ tan β).

In Fig. 7.4 the branching ratios of h→ bb, H → bb and A→ bb are shown as a function of tan β
for a fixed value of sin2(β − α) = 1, 0.99 and 0.98 in the Type-II 2HDM (MSSM) [283]. In Fig. 7.5,
similar figures for the branching ratios of h→ τ+τ−, H → τ+τ− and A→ τ+τ− are shown in the
Type-X (lepton specific) 2HDM.

In Refs. [282, 284] methods using the production and decay of the H and A have been studied in
the context of the MSSM. Since the masses of the H and A can be measured by the invariant mass
distributions in an appropriate decay mode in e+e− → HA, the branching ratios can be predicted as
a function of tan β. Thus one can extract tan β by measuring the branching ratios of H and A. Since
the tan β dependence of the branching ratio is large in small tan β regions, this method is useful for
small tan β. A second method [284] is based on the measurement of the total decay widths of the H
and A. For large tan β values, the total decay widths are dominated by the bb and ττ decay modes
in the Type-II and Type-X 2HDMs, respectively, whose partial widths are proportional to (tan β)2.
Therefore, tan β can be extracted using this method in large tan β regions.

In addition to these two methods, a new method using the precision measurement of the SM-like
Higgs boson h has been proposed in Ref. [283]. This can be applied to the case where sin2(β − α)
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Figure 7.5. The decay branching ratios are shown as a function of tanβ with a fixed value of sin2(β − α) for h→ ττ
(black curves), for H → ττ (red curves), and for A → ττ (blue curves) in the Type-X 2HDM. From left to right,
sin2(β − α) is taken to be 1, 0.99, and 0.98. The solid (dashed) curves denote the case with cos(β − α) ≤ 0
(cos(β − α) ≥ 0).

is smaller than unity through the tan β dependences in the Yukawa couplings for h. In the limit of
sin2(β − α) = 1, the Yukawa couplings for the SM-like Higgs boson h are identical to the SM ones,
so that there is no tan β dependence in them. However, if sin2(β−α) turns out to be slightly smaller
than unity in future precision measurements, then the Yukawa couplings for h can also depend on
tan β significantly. For example, for the Type-II 2HDM

Yhbb ∼ sin(β − α)− tan β cos(β − α), (7.1)
Yhττ ∼ sin(β − α)− tan β cos(β − α), (7.2)

and for the Type-X 2HDM

Yhbb ∼ sin(β − α) + cotβ cos(β − α), (7.3)
Yhττ ∼ sin(β − α)− tan β cos(β − α). (7.4)

At the ILC, the main decay modes of h can be measured precisely to the few percent level. The precision
measurement of the decay of h can be used to determine tan β for the case with sin(β − α) < 1.

In Fig. 7.6, the numerical results for the sensitivities of the tan β measurements are shown for
the Type-II 2HDM [283]. The production cross section and the number of the signal events are
evaluated for mH = mA = 200 GeV with √s = 500 GeV and Lint = 250 fb−1. The acceptance ratio
of the 4b final states in the e+e− → HA signal process is set to 50%. The results for the three
methods are shown. The results for 1 σ (solid) and 2 σ (dashed) sensitivities for the branching ratios,
the total width of H and A, and the branching ratio of h are plotted in the red, blue and black
curves, respectively. The parameter sin2(β − α) is set to 1 (left), 0.99 (middle) and 0.98 (right) for
cos(β − α) < 0.

In Fig. 7.7, the sensitivities to tan β are shown for the case of the Type-X 2HDM, where
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Figure 7.6. Sensitivities to the tanβ measurement by the three methods in the Type-II 2HDM. From left to right,
sin2(β − α) is taken to be 1, 0.99, and 0.98, with cos(β − α) ≤ 0. Estimated ∆ tanβ/ tanβ using the branching
ratio of H/A → bb̄ (red curves), the total width of H/A (blue curves), and the branching ratio of h → bb̄ (black
curves) are plotted as a function of tanβ. The solid curves stand for 1σ sensitivities, and the dashed curves for 2σ.
For HA production, mH = mA = 200 GeV with √s = 500 GeV and Lint = 250 fb−1 are assumed. For the h→ bb̄
measurement, ∆B/B = 1.3% (1σ) and 2.7% (2σ) are used.

Figure 7.7. The same as FIG. 7.6, but ττ decay modes are used for the analysis in the Type-X 2HDM. From left to
right, sin2(β − α) is taken to be 1, 0.99, and 0.98, with cos(β − α) ≤ 0. For Bhττ , ∆B/B = 2% (1σ) and 5% (2σ)
are assumed.

the channels H → τ+τ− and A → τ+τ− are the main decay modes [283]. With or without the
assumption of sin2(β − α) = 1, the total width measurement of H and A is a useful probe for the
large tan β regions. For the smaller tan β regions, the branching ratio measurement of H and A can
probe tan β. For sin(β − α) = 0.99 and 0.98, the measurement of the branching ratio of h→ τ+τ−

can give good tan β sensitivity over a wide range of tan β.
Here, comments on the tan β measurements for the other 2HDM types are given. In the Type-I

2HDM, the Yukawa coupling constants are universally changed from those in the SM. In the SM-like
limit, sin(β − α) = 1, the Yukawa interactions for H and A become weak for tan β > 1. As for the
tan β measurement at the ILC, the method using the total width of H and A is useless, because the
absolute value of the decay width is too small compared to the detector resolution. Without the
SM-like limit, the branching ratio measurement of H and A using the fermionic decay modes may be
difficult, because the bosonic decay modes H →WW and A→ Zh become important. Furthermore,
the decays of h are almost unchanged from the SM because there is no tan β enhancement. Thus,
the tan β determination in the Type-I 2HDM seems to be difficult even at the ILC. In the Type-Y
2HDM, the tan β sensitivity at the ILC would be similar to that of the Type-II 2HDM, because the
Yukawa interactions of the neutral scalar bosons with the bottom quarks are enhanced by tan β in
the same way.
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Chapter 8
Gamma-Gamma and e-Gamma
Option

Higgs production in γγ collisions, first studied in [285, 286, 287], offers a unique capability to
measure the two-photon width of the Higgs and to determine its charge conjugation and parity (CP)
composition through control of the photon polarization. Both measurements have unique value in
understanding the nature of a Higgs boson eigenstate. Photon-photon collisions also offer one of the
best means for producing a heavy Higgs boson singly, implying significantly greater mass reach than
electron-positron production of a pair of Higgs bosons.

There are many important reasons for measuring the γγ coupling of a Higgs boson, generically
denoted h. In the Standard Model, the coupling of the Higgs boson, hSM , to two photons receives
contributions from loops containing any charged particle whose mass arises in whole or part from
the vacuum expectation value (vev) of the neutral Higgs field. In the limit of infinite mass for the
charged particle in the loop, the contribution asymptotes to a value that depends on the particle’s
spin (i.e., the contribution does not decouple). Thus, a measurement of Γ(hSM → γγ) provides the
possibility of revealing the presence of arbitrarily heavy charged particles, since in the SM context all
particles acquire mass via the Higgs mechanism.1

Even if there are no new particles that acquire mass via the Higgs mechanism, a precision
measurement of N(γγ → h→ X) for specific final states X (X = bb,WW ∗, . . .) can allow one to
distinguish between a h that is part of a larger Higgs sector and the SM hSM . The ability to detect
deviations from SM expectations will be enhanced by combining this with other types of precision
measurements for the SM-like Higgs boson. Observation of small deviations would be typical for
an extended Higgs sector as one approaches the decoupling limit in which all other Higgs bosons
are fairly heavy, leaving behind one SM-like light Higgs boson. In such models, the observed small
deviations could then be interpreted as implying the presence of heavier Higgs bosons.

The ability to detect γγ → H0, A0 will be of greatest importance if the H0 and A0 cannot be
detected either at the LHC or in e+e− collisions at the ILC. In fact, there is a very significant section
of parameter space in the MSSM for which this is the case. The γγ collider would also play a very
important role in exploring a non-supersymmetric general two-Higgs-doublet model (2HDM) of which
the MSSM Higgs sector is a special case.

Once one or several Higgs bosons have been detected, precision studies can be performed.
Primary on the list would be the determination of the CP nature of any observed Higgs boson. This
and other types of measurements become especially important if one is in the decoupling limit of
a 2HDM. The decoupling limit is defined by the situation in which there is a light SM-like Higgs
boson, while the other Higgs bosons (H0, A0, H±) are heavy and quite degenerate. In the MSSM

1Loop contributions from charged particles that acquire a large mass from some other mechanism, beyond the SM
context, will decouple as (mass)−2 and, if there is a SM-like Higgs boson h, Γ(h→ γγ) will not be sensitive to
their presence.
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8 Gamma-Gamma and e-Gamma Option

context, such decoupling is automatic in the limit of large mA0 . In this situation, a detailed scan to
separate the H0 and A0 would be very important and entirely possible at the γγ collider. Further,
measurements of relative branching fractions for the H0 and A0 to various possible final states would
also be possible and reveal much about the Higgs sector model.

8.1 Production Cross Sections and Luminosity Spectra

The gamma-gamma option at the ILC opens a new opportunity for truly high energy two-photon
physics that is not limited to the QCD studies performed by most e+e− colliders. The production
cross sections for charged particles are considerably larger in γγ collisions than in e+e− enabling
the study of new particles above threshold at a higher rate - e.g. WW pair production at 500 GeV
is a factor of 20 larger than in e+e−. This effect more than offsets that factor of 5− 10 lower γγ
luminosity compared to the corresponding e+e− collider. Similarly the cross sections for charged
scalars, lepton and top pairs are a factor of 5− 10 higher at a photon collider compensating for the
luminosity reduction.

The proposed technique for the gamma-gamma option consists of Compton backscattering a
∼ 1 MeV laser photons from the 125-500 GeV electron and position beams. The backscattered
photon receives a large fraction of the incoming electron energy. This is described in detail in [288].
The maximum energy of the generated photons is given by Emaxγ = xEe/(1 + x), where Ee is the
electron beam energy and x = 4EeEL cos2(θ/2)/m2

ec
4 with EL and θ the laser photon energy and

angle between the electron and laser beam. The distance from the conversion point to the interaction
point is in the range of a few millimeters to a few centimeters. The optimal values of x are around
4.8, yielding Emax ≈ 0.82Ee, which maximizes the spin-0 luminosity near Eγγ = 0.8Eee, for a
particular configuration of beam and laser polarizations as shown in Figure 8.1. The fundamental laser
wavelength is determined by available technology and are typically 1.054 µm. For machine energies
of √s=250, 500, 1000 GeV the corresponding values of x are 2.26, 4.52 and 9.03, respectively. The
maximum Eγγ are 173 GeV, 409 GeV, and 900 GeV with the peak in the spin-0 luminosity somewhat
lower. The optimal machine energy (using a 1.054 µm laser) to study a 126 GeV Higgs-like particle
is about 215 GeV with x = 1.94. As mentioned above larger values of x are desirable and can be
obtained using non-linear optics to triple the laser frequency 2 In this case, the optimal machine
energy to study a 126 GeV Higgs-like particle is ∼170 GeV and x = 4.55 much closer to the optimal
value.

8.2 Higgs Studies

A Standard Model-like Higgs boson h arises in many models containing physics beyond the SM. The
h→ γγ coupling receives contributions from loops containing any charged particle whose mass, M ,
arises in whole or part from the vacuum expectation value of the corresponding neutral Higgs field.
When the mass, M , derives in whole or part from the vacuum expectation value (v) of the neutral
Higgs field associated with the h, then in the limit of M � mh for the particle in the loop, the
contribution asymptotes to a value that depends on the particle’s spin (i.e., the contribution does
not decouple). As a result, a measurement of Γ(h → γγ) provides the possibility of revealing the
presence of heavy charged particles that acquire their mass via the Higgs mechanism.

In addition, we note that B(h→ X) is entirely determined by the spectrum of particles with
mass < mh/2, and is not affected by heavy states with M > mh/2. Consequently, measuring
N(γγ → h → X) provides an excellent probe of new heavy particles with mass deriving from the
Higgs mechanism.

2The efficiency with which the standard 1.054 µ laser beam is converted to 0.351 µ is 70%. Thus, roughly 40% more
laser power is required in order to retain the subpulse power.
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8.2 Higgs Studies

Figure 8.1
The normalized dif-
ferential luminosity

1
Lγγ

dLγγ
dy

and the cor-
responding 〈λλ′〉 for
λe = λ′e = .4 (80%
polarization) and three
different choices of
the initial laser photon
polarizations P and
P ′. The distributions
shown are for ρ2 � 1
[289, 290]. Results for
x = 5.69, x = 4.334
and x = 1.86 are com-
pared.
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Figure 8.2
Higgs signal and heavy
quark backgrounds in
units of events per 2
GeV for a Higgs mass
of 115 GeV and assum-
ing a running year of
107 sec [291].

0

100

200

300

100 125 150 175
2-Jet Invariant Mass (GeV)

Ev
en

ts
/2

 G
eV

Mh=120 GeV

Signal

bb(g)

cc(g)

127



8 Gamma-Gamma and e-Gamma Option

Figure 8.3
(a) A figure of merit
quantifying the mea-
surement error on the
mass as a function of
the e−e− center-of-
mass energy. The opti-
mum and zero sensitiv-
ity points are marked.
(b) Relative yield for
a 115 GeV Higgs bo-
son at the point of
optimum sensitivity
and zero sensitivity to
mH . (c) Behavior of
the observable Y as a
function of mH , and
the projected error.
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A special feature of the γγ collider is the sharp edge of the γγ luminosity function, as depicted in
Fig. 8.1. The position of this edge can be controlled by changing the electron beam energy. As
it sweeps across the threshold for Higgs production, the number of, e.g., bb events will increase
dramatically. Since the position of this turn-on depends on the Higgs mass, a threshold scan offers
the possibility to measure the Higgs mass kinematically, as developed in Ref. [292].

This possibility was studied in the context of CLICHE [291], assuming that the Higgs mass is
already known to within a GeV or so. There is a point of optimum sensitivity to the Higgs mass a
few GeV below the peak of the cross section. The raw number of events at a single energy cannot
be used to measure the mass, however, because the γγ partial width cannot be assumed known a
priori. There is another point, though, close to the maximum of the cross section, at which there
is no sensitivity to the Higgs mass, and with maximum sensitivity to Γγγ , allowing the separation
of these two quantities. These points are illustrated in Fig. 8.3. Furthermore, the background can
be estimated using data obtained by running below the threshold. To estimate the sensitivity of the
yields to mH , we work with a simple observable based on the ratio of background-subtracted yields
at peak and at threshold:

Y = Npeak −Nbelow · rp
Nthreshold −Nbelow · rt

where N is the number of events in a mass window logged at the peak, on the threshold, and
below threshold, and rp and rt are scale factors to relate the background data taken below threshold
to the expectation at peak and at threshold. We have propagated statistical uncertainties, and,
assuming one year of data on peak, half a year on threshold and another half below threshold, we
find σY /Y = 0.088. This translates into an error on the inferred Higgs mass of 100 MeV. A more
refined treatment should improve this estimate somewhat. This estimate is obtained using the laser
and beam energies proposed for CLIC 1 and the analysis results are similar to those shown in in
Fig. 8.2. It is still necessary to investigate how sensitive the luminosity function is to the shape of the
luminosity curve. It is not sensitive to the electron polarization precision.
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8.2 Higgs Studies

8.2.2 Branching Fractions

The precision to which the most important decay modes of a Standard Model Higgs boson can
be measured at a gamma-gamma collider are presented in Table 8.1. One of the objectives of a
gamma-gamma collider would be to test the Standard Model predictions for Higgs branching fractions
and to use measurements of them to distinguish between the Standard Model and its possible
extensions, such as the minimal supersymmetric extension of the Standard Model (MSSM) or a more
general two-Higgs-doublet model (2HDM).

Table 8.1
Summary of Higgs
Branching Fraction and
other measurements
in 3 years of design
luminosity at a Higgs
Factory. This study
assumed a 120 GeV
Standard Model-like
Higgs Boson and accel-
erator parameters as
described in [291].

Measurement Precision

Γγγ ×B(h→ bb) 0.012
Γγγ ×B(h→WW ) 0.035
Γγγ ×B(h→ γγ) 0.121
Γγγ ×B(h→ ZZ) 0.064
Γγγ ×B(h→ γZ) 0.020

Γ∗γγ 0.021
Γ∗Total 0.13

mhSM (h→ γγ) 61 MeV
CP Asymmetry (h→WW ) 0.035-0.040

*Taking BR(h→ bb) from e+e− running at ILC

8.2.2.1 h→ bb

If there are no new particles that acquire mass via the Higgs mechanism, a precision measurement of
Γ(ĥ→ γγ) can allow one to distinguish between a ĥ that is part of a larger Higgs sector and the SM
hSM . Figure 8.2 shows the dijet invariant mass distributions for the Higgs signal and for the bb(g)
and cc(g) backgrounds, after all cuts.

Due to the large branching ratio for H → b̄b decay for a Higgs mass ∼ 115 GeV, this is the main
channel for Higgs studies at CLICHE. This channel has received the most attention and the studies
are already quite detailed [291, 293]. Our analysis includes perturbative QCD backgrounds, including
γγ → b̄b(g) and γγ → c̄c(g). The q̄q backgrounds are suppressed by choosing like polarizations for
the colliding photons, but this suppression is not so strong when the final states contain additional
gluons.

The mass resolution is around 6 GeV with a jet energy resolution of σE = 0.6 ×
√
E. The

distribution in the dijet invariant mass, mjets, for a mH = 115 GeV Higgs found in this study with
an integrated luminosity of 200 fb−1 is shown in Fig. 8.2. A clear signal peak can be seen above
sharply falling backgrounds. Including the three bins nearest to mjets ∼ 115 GeV, we obtain 4952
signal events and 1100 background events. Thus, the signal-to-background ratio is expected to be 4.5
after all cuts. A feature which is not taken into account in these studies is the pile-up of events from
different bunch crossings. Initial studies indicate that pile-up of order 10 bunch crossings degrades
the Higgs signal only slightly.

This would yield a measurement of Γ(hSM → γγ)B(hSM → bb) with an accuracy of
√
S +B/S ∼

1.2% in 3 years of design luminosity at a Higgs Factory. This study assumed a 120 GeV Standard
Model-like Higgs Boson and accelerator parameters as described in [291].

8.2.2.2 h→WW

Observation of this decay mode is extremely difficult at high-energy γγ colliders, because of the
large cross section for W pair production. If the γγ center-of-mass energy is below the W+W−

threshold, however, the continuum production of W pairs is greatly reduced, allowing the observation
of resonant production through a Higgs boson. The sharp peak in the γγ luminosity function seen in
Fig. 8.1 plays a key role here. Figure 8.4(a) compares the cross sections for the continuum W pair
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8 Gamma-Gamma and e-Gamma Option

Figure 8.4
(a) Cross sections for
γγ → h, γγ → h ×
Br(h → WW ) for
mH = 115 GeV and
γγ → WW production.
(b) Comparison of the
ideal invariant mass of
the WW pairs from
signal and background
events. (c) Selection of
the WW decay mode
of the Higgs boson
for mH = 115 GeV,
running at ECM (γγ) =
115 GeV at CLICHE.
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production with the Higgs resonance curve. As shown, the cross sections for σ(γγ →W+W−) and
Br(h→ W+W−)× σ(γγ → h) are comparable, if ECM (e−e−) = 150 GeV for a mH = 115 GeV.
One significant difference between the two type of events is the energy distribution of the W+W−

pairs, as illustrated in Figure 8.4(b).
Our study is concentrated on the hadronic decays of the W pairs, applying several kinematic

cuts. One pair of jets must reconstruct to the W mass, while the other pair is required to saturate the
remaining phase space. This cuts allows us not only to reduce the W+W− pairs to those with energy
similar to those produced in Higgs events, but also to reject any possible γγ → qq(g) background.
There must be at least four jets in the event and the jet reconstruction efficiency is assumed to be
100%. In contrast to the h → bb̄ analysis, here we are imposing a y = 0.003 cut in the Durham
algorithm used in the jet reconstruction. In addition, the transverse momentum is required to be
smaller than 0.1. After these cuts we have a 29% reconstruction efficiency. A comparison of the signal
and the background after cuts is given in Fig. 8.4(c), which corresponds to a signal-to-background
ratio of 1.3, and the statistical precision in the signal rate measurement is expected to be 5%.

The other event topologies (two leptons and missing energy, or one lepton, missing energy and
jets) remain to be studied. Techniques similar to those described in [294] may be used. We also
believe that the decay H → ZZ,Zγ might be interesting, despite their relatively small branching
ratios.

8.2.2.3 h→ γγ

In almost any phenomenological context, the decay H → γγ is a very rare one. However, the number
of Higgs events is large at a γγ collider, so an interesting number of H → γγ events would be
produced. Furthermore, the backgrounds are expected to be quite small, below 2 fb [295], since there
is no tree-level coupling of photons, and the box-mediated processes are peaked very sharply in the
forward direction. A complete background study has not yet been made, but initial estimates indicate
that a clear peak in the γγ mass distribution should be observable, and we assume here that the
background error would be negligible.

The number of events produced in this channel is proportional to Γ2
γγ/Γtotal. The quadratic

dependence is interesting, because if Γtotal could be measured elsewhere, a small error on Γγγ would
be obtained. Similarly, if Γγγ is measured elsewhere, a small error Γtotal could be obtained. In Fig. 8.5,
we can see that a 10% measurement of Γ2

γγ/Γtotal can be made with less than a year of data taking.
The cleanliness of these events and good energy resolution in the electromagnetic calorimeter

would allow for an independent measurement of the Higgs mass. Assuming that the calorimeter
energy scales can be sufficiently well calibrated, a resolution better than 100 MeV can be expected.
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8.2 Higgs Studies

Figure 8.5
The expected precision
in the h→ γγ decay
width from direct mea-
surements of h → γγ
for mH = 115 GeV.
The precision is less
than in the equiva-
lent measurement of
H → WW, b̄b, but this
observable is unique
to a low-energy γγ
collider like CLICHE.
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8.2.3 Determining CP Nature of a Higgs Boson

Precision studies of the Standard Model-like Higgs can be performed using the peaked luminosity
spectrum (II) with √s = mHiggs/ypeak. These include: determination of CP properties; a detailed
scan to separate the H0 and A0 when in the decoupling limit of a 2HDM; branching ratios, and the
ration of vacuum expectation values - tan β.

Determination of the CP properties of any spin-0 Higgs ĥ produced in γγ collisions is possible
since γγ → ĥ must proceed at one loop, whether ĥ is CP-even, CP-odd or a mixture. As a result,
the CP-even and CP-odd parts of ĥ have γγ couplings of similar size. However, the structure of the
couplings is very different:

ACP=+ ∝ ~ε1 · ~ε2 , ACP=− ∝ (~ε1 × ~ε2) · p̂beam . (8.1)

By adjusting the orientation of the photon polarization vectors with respect to one another, it is
possible to determine the relative amounts of CP-even and CP-odd content in the resonance ĥ [296].
If ĥ is a mixture, one can use helicity asymmetries for this purpose [234, 296]. However, if ĥ is either
purely CP-even or purely CP-odd, then one must employ transverse linear polarizations [234, 297].

For a Higgs boson of pure CP, one finds that the Higgs cross section is proportional to

dL
dEγγ

(1 + 〈λλ′〉+ CP〈λTλ′T 〉 cos 2δ) (8.2)

where CP = +1 (CP = −1) for a pure CP-even (CP-odd) Higgs boson and and δ is the angle between
the transverse polarizations of the laser photons. Thus, one measure of the CP nature of a Higgs is
the asymmetry for parallel vs. perpendicular orientation of the transverse linear polarizations of the
initial laser beams. In the absence of background, this would take the form

A ≡
N‖ −N⊥
N‖ +N⊥

= LCP 〈λTλ
′
T 〉

1 + 〈λλ′〉 , (8.3)

which is positive (negative) for a CP-even (odd) state. The bb(g) and cc(g) backgrounds result in
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Figure 8.6
We plot the lumi-
nosities and corre-
sponding 〈λλ′〉 and
〈λTλ′T 〉 for operation
at √s = 206 GeV
and x = 1.86, as-
suming 100% trans-
verse polarization for
the laser photons and
λe = λ′e = 0.4. These
plots are for the naive
non-CAIN distributions.
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Figure 8.7
We plot the luminos-
ity, L = dL/dEγγ , in
units of fb−1/4.28 GeV
and corresponding
〈λλ′〉 predicted by
CAIN for operation
at √s = 206 GeV
and x = 1.86, as-
suming 100% trans-
verse polarization for
the laser photons and
λe = λ′e = 0.4. The
dashed (dotted) curve
gives the component
of the total luminosity
that derives from the
Jz = 0 (Jz = 2) two-
photon configuration.
The solid luminosity
curve is the sum of
these two components
and 〈λλ′〉 = (LJz=0 −
LJz=2)/(LJz=0 +
LJz=2).
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additional contributions to the N‖+N⊥ denominator, which dilutes the asymmetry. The backgrounds
do not contribute to the numerator for CP invariant cuts. Since, as described below, total linear
polarization for the laser beams translates into only partial polarization for the back-scattered photons
which collide to form the Higgs boson, both N‖ and N⊥ will be non-zero for the signal. The expected
value of A must be carefully computed for a given model and given cuts.

At the kinematic limit, z = zmax = x/(1 + x), the ratio of λ to λT is given by

λ

λT
= λex

2 + x

1 + x
∼ 1 (8.4)

for λe = 0.4 and x = 1.86. Substantial luminosity and values of λT close to the maximum are
achieved for moderately smaller z. Operation at x = 1.86 (corresponding to √s = 206 GeV and
laser wave length of λ ∼ 1 µ) would allow λmax

T ∼ λmax ∼ 0.6. Making these choices for both
beams is very nearly optimal for the CP study for the following reasons. First, these choices will
maximize dL

dEγγ
〈λTλ′T 〉 at Eγγ = 120 GeV. As seen from earlier equations, it is the square root of the

former quantity that essentially determines the accuracy with which the CP determination can be
made. Second, λe = λ′e = 0.4 results in 〈λλ′〉 > 0. This is desirable for suppressing the background.
(If there were no background, Eq. (8.3) implies that the optimal choice would be to employ λe

and λ′e such that 〈λλ′〉 < 0. However, in practice the background is very substantial and it is very
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Figure 8.8
We plot the signal and
bb and cc backgrounds
for a SM Higgs boson
with mhSM = 120 GeV
assuming γγ operation
at √s = 206 GeV and
x = 1.86, based on the
luminosity and polar-
ization distributions of
Fig. 8.7 for the case of
linearly polarized laser
photons. The cross
sections presented are
those for δ = π/4, i.e.
in the absence of any
contribution from the
transverse polarization
term in Eq. (8.2).
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important to have 〈λλ′〉 > 0 to suppress it as much as possible.) In Fig. 8.6, we plot the naive
luminosity distribution and associated values of 〈λλ′〉 and 〈λTλ′T 〉 obtained for λe = λ′e = 0.4 and
100% transverse polarization for the laser beams.

As discussed in [297], the asymmetry studies discussed below are not very sensitive to the
polarization of the colliding e beams. Thus, the studies could be performed in parasitic fashion during
e−e+ operation if the e+ polarization is small. (As emphasized earlier, substantial e+ polarization
would be needed for precision studies of other hSM properties.)

The luminosity distribution predicted by the CAIN Monte Carlo for transversely polarized laser
photons and the corresponding result for 〈λλ′〉 are plotted in Fig. 8.7. We note that even though the
luminosity spectrum is not peaked, it is very nearly the same at Eγγ = 120 GeV as in the circular
polarization case. As expected from our earlier discussion of the naive luminosity distribution, at
Eγγ = 120 GeV we find 〈λλ′〉 ∼ 〈λTλ′T 〉 ∼ 0.36. Since CAIN includes multiple interactions and
non-linear Compton processes, the luminosity is actually non-zero for Eγγ values above the naive
kinematic limit of ∼ 132 GeV. Both 〈λλ′〉 and 〈λTλ′T 〉 continue to increase as one enters this region.
However, the luminosity becomes so small that we cannot make effective use of this region for this
study. We employ these luminosity and polarization results in the vicinity of Eγγ = 120 GeV in a full
Monte Carlo for Higgs production and decay as outlined earlier in the circular polarization case. All
the same cuts and procedures are employed.

The resulting signal and background rates for δ = π/4 are presented in Fig. 8.8. The width
of the Higgs resonance peak is 5.0 ± 0.3 GeV (using a Gaussian fit), only slightly larger than in
the circularly polarized case. However, because of the shape of the luminosity distribution, the
backgrounds rise more rapidly for mbb values below 120 GeV than in the case of circularly polarized
laser beams. Thus, it is best to use a slightly higher cut on the mbb values in order to obtain the best
statistical significance for the signal. Ref. [288] finds ∼ 360 reconstructed two-jet signal events with
mbb ≥ 114 GeV in one year of operation, with roughly 440 background events in this same region.
Under luminosity assumptions similar to those used in Table 8.1, this corresponds to a precision of
√
S +B/S ∼ 0.032 for the measurement of Γ(hSM → γγ)B(hSM → bb). Not surprisingly, this

is not as good as for the circularly polarized setup, but it is still indicative of a very strong Higgs
signal. Turning to the CP determination, let us assume that we run 50% in the parallel polarization
configuration and 50% in the perpendicular polarization configuration. Then, because we have only
60% linear polarization for the colliding photons for Eγγ ∼ 120 GeV, N‖ ∼ 180[1+(0.6)2]+273 ∼ 518
and N⊥ ∼ 180[1− (0.6)2] + 273 = 388. For these numbers, A = 130/906 ∼ 0.14. The error in A
(again with luminosity assumptions similar to those used in Table 8.1) is δA =

√
N‖N⊥/N3 ∼ 0.007

(N ≡ N‖ +N⊥), yielding δA
A = δCP

CP ∼ 0.05. This measurement would thus provide a fairly strong
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8 Gamma-Gamma and e-Gamma Option

Figure 8.9
Summary of gamma-
gamma collider golden
modes

sleptons. Indeed LHC has difficulties discovering
sleptons for masses above 300 – 350 GeV/c2, and
the e+e− collider has to pair-produce sleptons,
hence its range is limited to

√
see/2. In case of

a eγ collider the reach is 0.9 · √
see − mχ0

1
, e.g.

350/c2 GeV for 250 GeV electron beams and an
LSP of 100 GeV [33].

Another possible channel is γγ → gluinos. This
reaction is only accessible at an e+e− collider
if the squarks are heavier than the gluinos and
the decays q̃ → g̃q are open. Photons couple to
squarks and quarks and can produce gluinos via
box diagrams. The yield is shown in Fig. 10 for
both direct and resolved contributions. Typically
2000 gluinos pairs can be produced/year for light
squarks (325 GeV/2) [34]. It remains to be seen
what one can learn more than what is known from
the LHC at a PC at that point.

Other new theories include extra dimensions.
It appears that the reaction γγ → WW is very
sensitive to ADD type of effects [35]. The sensi-
tivity scales with a CMS energy as 11

√
s. For

e+e− → ff the sensitivity is 6.5
√

s, and for
the LHC pp → jj it is 9 TeV. The sensitivity to
ADD extra dimensions in the channel γγ → γγ
is shown in 11 [36]. Recent studies [37] use the
channel γγ → e+e−G to search for evidence for
Extra Dimensions.

Also the sensitivity to effects such as those ex-
pected in non-commutative theories is large at a
γγ collider [38].

Finally, a new sort of effect is so called unpar-
ticles [39]. Effects of unparticles were studied re-
cently for two photon collisions [40]. The effects
are significant for virtual unparticle production
on the γγ → tt̄ cross section. Another channel
with sensitivity is γγ → γγ.

4. Conclusion

A γγ and eγ collider provide many exciting
physics opportunities, some of which were sum-
marized in this paper. A PC will be largely
complementary to its drive LC and will therefor
strengthen the case for such a machine. There-
fore a PC option should be considered from the
onset within the planning of the project. A vig-
orous R&D plan for a PC will need to be put in

place, preferably on a world-wide level.
A list of processes which are considered to be

important for the physics program of the photon
collider option of the LC, is shown in Table 4.

Reaction Remarks

γγ → h0 → bb̄ SM/MSSM Higgs, Mh0 < 160 GeV/c2

γγ → h0 → WW (∗) SM Higgs, 140< Mh0 < 190 GeV/c2

γγ → h0 → ZZ(∗) SM Higgs, 180< Mh0 < 350 GeV/c2

γγ → h0 → γγ SM Higgs, 120< Mh0 < 160 GeV/c2

γγ → h0 → tt SM Higgs, Mh0 > 350 GeV/c2

γγ → H, A → bb̄ MSSM heavy Higgs, interm. tan β

γγ → f̃
¯̃
f, χ̃+

i χ̃−
i large cross sections

γγ → g̃g̃ measurable cross sections
γγ → H+H− large cross sections

γγ → S[t̃̄t̃] t̃̄t̃ stoponium
eγ → ẽ−χ̃0

1 Mẽ− < 0.9 × 2E0 − Mχ̃0
1

γγ → γγ non-commutative theories
eγ → eG Extra Dimensions
γγ → φ Radions

eγ → ẽG̃ superlight gravitons
γγ → W+W − anom. W interactions, extra dimensions
eγ− → W −νe anom. W couplings
γγ → 4W/(Z) WW scatt., quartic anom. W ,Z
γγ → tt̄ anomalous top quark interactions
eγ− → t̄bνe anomalous Wtb coupling
γγ → hadrons total γγ cross section
eγ− → e−X, νeX NC and CC structure functions
γg → qq̄, cc̄ gluon in the photon
γγ → J/ψ J/ψ QCD Pomeron

Table 4
Gold–plated processes at photon colliders.
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confirmation of the CP=+ nature of the hSM after three 107 sec years devoted to this study.

8.3 Understanding gamma-gamma backgrounds at the ILC

QCD aspects of gamma-gamma physics have been studied at electron-positron colliders over the last
several decades years. At LEP, gamma-gamma collisions with √s up to 140 GeV have been studied.
Up to now, the photons have been produced via bremsstrahlung from the electron and positron beams,
leading to soft energy spectra with only limited statistics at high √s, whereas the gamma-gamma
option of the ILC will produce collisions in the high-energy part of the spectrum. A plethora of
QCD physics topics in two-photon interactions can be addressed with a gamma-gamma collider, as
discussed in [291]. These topics include total gamma-gamma to hadrons cross sections and studies
of the (polarized) photon structure functions. Furthermore, good knowledge and understanding
of two-photon processes will be essential for controlling physics background contributions to other
processes and machine backgrounds at TeV and multi-TeV linear electron-positron colliders.

8.4 Summary

A gamma-gamma (and e-gamma) collider provide exciting physics opportunities that are complemen-
tary to and thus strengthen the physics case for the ILC. This section presented a summary of Higgs
studies possible at a gamma-gamma collider. The broader physics program of a photon collider is
summarized in Table 8.9.
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Chapter 9
Summary

A summary of all model independent coupling precisions is given in Table 9.1.

Table 9.1. Summary of expected accuracies ∆gi/gi for model independent determinations of the Higgs boson
couplings. The theory errors are ∆Fi/Fi = 0.1%. For the invisible branching ratio, the numbers quoted are 95%
confidence upper limits.

ILC(250) ILC(500) ILC(1000) ILC(LumUp)√
s (GeV) 250 250+500 250+500+1000 250+500+1000

L (fb−1) 250 250+500 250+500+1000 1150+1600+2500
γγ 18 % 8.4 % 4.0 % 2.4 %
gg 6.4 % 2.3 % 1.6 % 0.9 %
WW 4.8 % 1.1 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 1.0 % 0.5 %
tt̄ – 14 % 3.1 % 1.9 %
bb̄ 5.3 % 1.6 % 1.3 % 0.7 %
τ+τ− 5.7 % 2.3 % 1.6 % 0.9 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %
µ+µ− 91% 91% 16 % 10 %
ΓT (h) 12 % 4.9 % 4.5 % 2.3 %
hhh – 83 % 21 % 13 %
BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 %

For the purpose of comparing ILC coupling precisions with those of other facilities we present
the coupling errors in Table 9.2.

Table 9.2. Summary of expected accuracies ∆gi/gi of Higgs boson couplings using, for each coupling, the fitting
technique that most closely matches that used by LHC experiments. For gg , gγ , gW , gZ , gb, gt, gτ ,ΓT (h) the seven
parameter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] is used. For the couplings
gµ, ghhh and the limit on invisible branching ratio independent analyses are used. The charm coupling gc comes
from our 10 parameter model independent fit. All theory errors are 0.1%. For the invisible branching ratio, the
numbers quoted are 95% confidence upper limits.

ILC(250) ILC(500) ILC(1000) ILC(LumUp)√
s (GeV) 250 250+500 250+500+1000 250+500+1000

L (fb−1) 250 250+500 250+500+1000 1150+1600+2500
γγ 17 % 8.3 % 3.8 % 2.3 %
gg 6.1 % 2.0 % 1.1 % 0.7 %
WW 4.7 % 0.4 % 0.3 % 0.2 %
ZZ 0.7 % 0.5 % 0.5 % 0.3 %
tt̄ 6.4 % 2.5 % 1.3 % 0.9 %
bb̄ 4.7 % 1.0 % 0.6 % 0.4 %
τ+τ− 5.2 % 1.9 % 1.3 % 0.7 %
ΓT (h) 9.0 % 1.7 % 1.1 % 0.8 %
µ+µ− 91 % 91 % 16 % 10 %
hhh – 83 % 21 % 13 %
BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %

In the energy and luminosity scenarios discussed in this paper it was assumed that the luminosity
upgrades at 250 and 500 GeV center of mass energy occurred after the energy upgrade at 1000 GeV.
It is of interest to consider a scenario where the 250 GeV and 500 GeV luminosity upgrade running
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9 Summary

Table 9.3. Energy and luminosities assuming no running at 1 TeV center of mass energy.

Nickname Ecm(1) Lumi(1) + Ecm(2) Lumi(2) Runtime Wallplug E
(GeV) (fb−1) (GeV) (fb−1) (yr) (MW-yr)

ILC(250) 250 250 1.1 130
ILC(500) 250 250 500 500 2.0 270
ILC500(LumUp) 250 1150 500 1600 3.9 660

occurs before the energy upgrade to 1000 GeV. This would correspond to the energies and luminosities
in Table 9.3.

A summary of all model independent coupling precisions for the case where the 250 GeV and 500
GeV luminosity upgrade running occurs before the energy upgrade to 1000 GeV is shown in Table 9.4.

Table 9.4. Summary of expected accuracies ∆gi/gi for model independent determinations of the Higgs boson
couplings. The theory errors are ∆Fi/Fi = 0.1%. For the invisible branching ratio, the numbers quoted are 95%
confidence upper limits.

ILC(250) ILC(500) ILC500(LumUp)√
s (GeV) 250 250+500 250+500

L (fb−1) 250 250+500 1150+1600
γγ 18 % 8.4 % 4.5 %
gg 6.4 % 2.3 % 1.2 %
WW 4.8 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 0.5 %
tt̄ – 14 % 7.8 %
bb̄ 5.3 % 1.6 % 0.8 %
τ+τ− 5.7 % 2.3 % 1.2 %
cc̄ 6.8 % 2.8 % 1.5 %
µ+µ− 91 % 91 % 42 %
ΓT (h) 12 % 4.9 % 2.5 %
hhh – 83 % 46 %
BR(invis.) < 0.9 % < 0.9 % < 0.4 %

The facility comparison table in the case where the 250 GeV and 500 GeV luminosity upgrade
running occurs before the energy upgrade to 1000 GeV is shown in Table 9.5.

Table 9.5. Summary of expected accuracies ∆gi/gi of Higgs boson couplings using, for each coupling, the fitting
technique that most closely matches that used by LHC experiments. For gg , gγ , gW , gZ , gb, gt, gτ ,ΓT (h) the seven
parameter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] is used. For the couplings
gµ, ghhh and the limit on invisible branching ratio independent analyses are used. The charm coupling gc comes
from our 10 parameter model independent fit. All theory errors are 0.1%. For the invisible branching ratio, the
numbers quoted are 95% confidence upper limits.

ILC(250) ILC(500) ILC500(LumUp)√
s (GeV) 250 250+500 250+500

L (fb−1) 250 250+500 1150+1600
γγ 17 % 8.3 % 4.4 %
gg 6.1 % 2.0 % 1.1 %
WW 4.7 % 0.4 % 0.3 %
ZZ 0.7 % 0.5 % 0.3 %
tt̄ 6.4 % 2.5 % 1.4 %
bb̄ 4.7 % 1.0 % 0.6 %
τ+τ− 5.2 % 1.9 % 1.0 %
ΓT (h) 9.0 % 1.7 % 1.0 %
µ+µ− 91 % 91 % 42 %
hhh – 83 % 46 %
BR(invis.) < 0.9 % < 0.9 % < 0.4 %
cc̄ 6.8 % 2.8 % 1.5 %

A comparison of model independent coupling precisions with and without 1 TeV running is shown
in Table 9.6.

The facility comparison table with and without 1 TeV running is shown in Table 9.7.
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Table 9.6. Summary of expected accuracies ∆gi/gi for model independent determinations of the Higgs boson
couplings. The theory errors are ∆Fi/Fi = 0.1%. For the invisible branching ratio, the numbers quoted are 95%
confidence upper limits.

ILC500(LumUp) ILC(LumUp)√
s (GeV) 250+500 250+500+1000

L (fb−1) 1150+1600 1150+1600+2500
γγ 4.5 % 2.4 %
gg 1.2 % 0.9 %
WW 0.6 % 0.6 %
ZZ 0.5% 0.5 %
tt̄ 7.8 % 1.9 %
bb̄ 0.8 % 0.7 %
τ+τ− 1.2 % 0.9 %
cc̄ 1.5 % 1.0 %
µ+µ− 42 % 10 %
ΓT (h) 2.5 % 2.3 %
hhh 46 % 13 %
BR(invis.) < 0.4 % < 0.4 %

Table 9.7. Summary of expected accuracies ∆gi/gi of Higgs boson couplings using, for each coupling, the fitting
technique that most closely matches that used by LHC experiments. For gg , gγ , gW , gZ , gb, gt, gτ ,ΓT (h) the seven
parameter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] is used. For the couplings
gµ, ghhh and the limit on invisible branching ratio independent analyses are used. The charm coupling gc comes
from our 10 parameter model independent fit. All theory errors are 0.1%. For the invisible branching ratio, the
numbers quoted are 95% confidence upper limits.

ILC500(LumUp) ILC(LumUp)√
s (GeV) 250+500 250+500+1000

L (fb−1) 1150+1600 1150+1600+2500
γγ 4.4 % 2.3 %
gg 1.1 % 0.7 %
WW 0.3 % 0.2 %
ZZ 0.3 % 0.3 %
tt̄ 1.4 % 0.9 %
bb̄ 0.6 % 0.4 %
τ+τ− 1.0 % 0.7 %
ΓT (h) 1.0 % 0.8 %
µ+µ− 42 % 10 %
hhh 46 % 13 %
BR(invis.) < 0.4 % < 0.4 %
cc̄ 1.5 % 1.0 %
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