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The CALICE SDHCAL prototype

The CALICE SDHCAL prototype

Description

Semi-Digital Hadron Calorimeter

@ Sampling calorimeter
@ 48 layers :

o Steel absorber
o Sensitive medium : GRPC

@ Segmentation :
o Transverse:1cmx 1cm
o Longitudinal : 2.67 cm (abs. + sens)

@ Semi digital readout with 3 thresholds

Readout pads
\ PCB interconnect <1cm/x 1cm)
PCB (1.2im)+ASICs(1.7 mm) / Readout ASIC
} (Hardroc2, 1.6mm) /

Mylar layer (504)

PP suppprt (polycarbonate), {
|

Gas gap

Cathode glass (1.1mm)
/ Mylar (1750) Ceramic ball spacer (1.2mm) + resistive coating

Glass fiber frame (=1.2mm) ’i"félli‘i:iéﬁ;ﬁ’;m
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The CALICE SDHCAL prototype

Performances
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The CALICE SDHCAL prototype

Performances

Energy reconstruction
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The Arbor Particle Flow Algorithm

ArborPFA

Software package

PandoraPFA structure ( arXiv phys.ins-det/1506.05348)

@ PandoraSDK : toolkit for generic PFA development

@ PandoraMonitoring (optionnal) : ROOT Eve event display designed for PFA

@ LCContent : the algorithm contents (cone clustering, pandora associations, etc ...)
o

MarlinPandora : Marlin processor implementation for LCContent

Current version of ArborPFA designed for CALICE SDHCAL.
Version of this study : v01-04-00 (https://github.com/SDHCAL/ArborPFA.git)
Provides a dedicated API for Arbor algorithms built on top of PandoraSDK APIs.

ArborPFA package forseen structure

Version v02-00-00

Hosted at https://github.com/rete/ArborPFA.git
Full detector purpose

Match the PandoraPFA package structure :

@ PandoraSDK : toolkit for generic PFA development

@ PandoraMonitoring (optionnal) : ROOT Eve event display designed for PFA

@ ArborContent : the algorithm contents (connector seeding, cleaning, tree associations ...)
o

MarlinArbor : Marlin processor implementation for ArborContent
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ArborPFA

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.
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ArborPFA

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.
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The Arbor Particle Flow Algorithm

ArborPFA

Principle

Particle Flow Algorithm based on hadronic shower tree-like topology.

®
®
1@
o0 600009
‘@ g
\.\'
® o

Some definitions

@ Object : Node linked by one or many connector(s) (+ seeds and leaves)
@ Connector : Oriented link. Links two objects

@ Flow direction : Connector orientation, backward or forward
@ Tree : Set of objects linked by connectors. For each object :

e 0 or 1 backward connector
o 0 or many forward connector(s)

— Implies a unique tree structure solution (1 seed per tree)
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ArborPFA

The algorithms

(@ Object creation

H Create objects, ready to be connected.
@ Nearest Neigbours clustering in each layer
@ If cluster size <= 4, cluster = 1 object
@ If cluster > 4, each cluster hit = 1 object
Allows to :
@ overcome the track hit multiplicity in gaseous calorimeters
@ decrease the size of the problem. NHit — NObject (< NHit)

@ accelerate the connection procedure
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ArborPFA

The algorithms

Tree building

Iteration phase :
@ Connector creation between objects (seeding)
@ Connector cleaning to obtain a tree structure (cleaning)

Repeat the two previous algorithms as much as needed.

Global idea : create an initial tree structure to start with. Then alterate the latter by creating more
optimized connections.
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ArborPFA

The algorithms

(@ Connector creation 1

B For each object, we look for nearby objects in the 3 next layers within a distance of 45 mm. A
connection is then created for each of them.
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The Arbor Particle Flow Algorithm

ArborPFA

The algorithms

Connector cleaning

H Clean connectors to create a tree structure.
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ArborPFA

The algorithms

Connector cleaning

B Clean connectors to create a tree structure.
For each object :
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ArborPFA

The algorithms

Connector cleaning 1

B Clean connectors to create a tree structure.
For each object :

@ Computation of the reference direction :

Crer = Wock- Y, Y, Co.c — Wiwd- 3, ¥ Er5  (5)
G b 57
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ArborPFA

The algorithms

Connector cleaning 1

B Clean connectors to create a tree structure.
For each object :

@ Computation of the reference direction :

Crer = Wock- Y, Y, Co.c — Wiwd- 3, ¥ Er5  (5)
G b 57

\T

@ For each object in the backward direction, we
define the x order parameter : A

=G @) e ’
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ArborPFA

The algorithms

Connector cleaning 1

B Clean connectors to create a tree structure.
For each object :

@ Computation of the reference direction :

Crer = Wock- Y, Y, Co.c — Wiwd- 3, ¥ Er5  (5)
G b 57

@ For each object in the backward direction, we
define the x order parameter :

=G @) e ’

@ The connector with the smallest k is kept.
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ArborPFA

The algorithms

Connector cleaning 1

B Clean connectors to create a tree structure.
For each object :

@ Computation of the reference direction :
Crer = Wock- Y, Y, Co.c — Wiwd- 3, ¥ Er5  (5)
G b 5 f

@ For each object in the backward direction, we
define the x order parameter : I

=G @) e

@ The connector with the smallest k is kept.

@ At the end of the algorithm, the other
connectors are deleted.
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ArborPFA

The algorithms

Connector cleaning 1

B Clean connectors to create a tree structure.
For each object :

@ Computation of the reference direction :
Crer = Wock- Y, Y, Co.c — Wiwd- 3, ¥ Er5  (5)
G b 5 f

@ For each object in the backward direction, we
define the x order parameter : I

=G @) e

@ The connector with the smallest k is kept.

@ At the end of the algorithm, the other
connectors are deleted.

— Formation of a tree structure.
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ArborPFA

The algorithms

@ et (5 Connector alignment

B From the latest tree structure, more connections are created. This creates an alignment within
the shower. A second connector cleaning is then performed to obtain a final tree structure.
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The Arbor Particle Flow Algorithm

ArborPFA

The algorithms

(® Track-to-tree associat

B Association between tracks and trees performed
with simple criteria : K &

1
\
gy

@ Distance between a tree seed and track
extrapolation to the calorimeter front face.

AR

@ Track momentum - tree energy comparison

@ Handling of special cases as early interactions h b
v

4

@ Neutral tree merging

B Interaction of neutral particles in an absorber.
— Many seeds in the same layer, thus many
reconstructed trees instead of a single one.
Seeds belonging to this kind of configuration are
identified and their trees merged.

Y
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ArborPFA

The algorithms
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/ @ one track (if charged particle)
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Algorithm performances
@00

Single particle reconstruction

Reconstruction inputs

Data : CERN SPS 2012 - August-September
@ Particles : h*

@ Energies : [10 ; 80] GeV by steps of 10 GeV
@ "Fake" track generated :

° ﬁ = (0, 0, Ebsam)

o Entry point @ : barycentre (by, by) of hits in the 5
first layers
= 8= (bx, by, Zfront)

@ No magnetic field (B =0 T)
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Single particle analysis
Efficiency and Npfos
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Single particle analysis

Reconstructed energy and resolution
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Algorithm performances
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Overlaid particles

Overlay of two hadronic events

@ Same data set

@ Particle 1 energy : 10 GeV
@ Particle 2 energies : [10 ; 50] GeV by steps of 10 GeV

Overlay algorithm :
@ Determination of entry points and barycentres.
@ Removal of hits belonging to the primary track segment of particle 1 (10 GeV)
@ Shower re-centered in calorimeter (x and y) and = d/2 shift in the x direction
@ Overlaid hits : the highest threshold is kept
@ Hits are tagged 1, 2 or 3 (overlaid)




Overlaid particles

Efficiency and purity

Algorithm performances
(o] le}
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Overlaid particles
Probability and energy

o 9 © 0 0o o o o o

Algorithm performances
ooe
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Conclusion and roadmap

Conclusion and roadmap

Conclusion

@ Particle flow algorithm development based hadronic shower tree topology for the SDHCAL
prototype

@ Performance extraction for single particle - OK

@ Performance extraction for two overlaid particles - OK till 5 cm
v

@ Correction of some algorithms — re-extract performances (to do)
@ |Implementation for ILD-like detectors :

@ Angular correction for connections (advanced)

o Implémentation for ECal (started)

@ Muon reconstruction (to do)

@ Photon reconstruction — GARLIC

o Energy calibration (ECal + HCal) (to do)

@ Physics performances :

o Jet energy resolution and scale (to do)
o W - Z separation
e Physics channel e+e- — HZ




Conclusion and roadmap

Thanks for your attention !




Backup

Backup

Particle reconstruction and event selection

# hits

Reconstruction : clustering en temps

@ Minimum NHit : 7
N @ Time window : £ 2

3
ey

10000 20000 30000 40000 50000
time (x 200ns)
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Backup

Backup

Particle reconstruction and event selection

PRr= T T . . =
£ E
** E
2 L -
1 Reconstruction : clustering en temps
10 E @ Minimum NHit : 7

I o Time window : + 2

10000 20000 30000 40000 50000
time (x 200ns)

o
5,

CALICE Preliminary

Epean=40GeV

Hadronic event selection

—— Before selection

—— Aterselecto

No cherenkdv detector — topological selection
@ Muon : NHit/Nzper > 2.2
@ Neutral particles : NHit € 5 first layers > 4

# reconstructed events
5

Niouched layers/ AMS>5cm
Niouched layers

@ Electrons : Zpegin > 5 and Nyouched layers = 30

@ Radiative muons : <20 % 1

-

| L1
500 1000
Number of hits
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Backup

Backup

ArborPFA - Second connector iteration

® et () Connector alignment

B From the previous tree structure, more connectors
are created.
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Backup

Backup

ArborPFA - Second connector iteration

B From the previous tree structure, more connectors
are created.

@ Connector cleaning 2

M Similar second connector cleaning.

One difference : cleaning performed layer per layer ! ! 1
starting from the last one, with & = 2 A Ay
% % | 44
. . . 1
— Connector aligned with forward connections. 1
1 i
+ Incoming ' > /,'
— Tree structure ! st RN g
- ™ M
i .
1 h
OB e
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Backup

Overlaid hits approximation
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Backup

Backup

00 GeV jets statistics
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