# update of $\mathrm{vHHH} @ 1$ TeV 

Junping Tian (KEK)

ILD Analysis \& Software Meeting, Feb. 18, 2015
recent poster at HPNP 2015: http://jodo.sci.u-toyama.ac.jp/theory/HPNP2015/Slides/HPNP2015Poster1/ Tian 20150212.pdf

## status of Higgs self-coupling analysis



- $\mathrm{ZHH} \longrightarrow \mathrm{Z}(\mathrm{bb})(\mathrm{bb}) @ 500 \mathrm{GeV}$ : Claude kinematic fitting, matrix element method, etc.
- $\mathrm{HH} \longrightarrow \mathrm{bb}\left(\mathrm{WW}^{*}\right)$ : Masakazu —- flavor tagging, PID, etc.
- $v v \mathrm{HH} \longrightarrow \mathrm{vv}(\mathrm{bb})(\mathrm{bb}) @ 1 \mathrm{TeV}$ : Junping —updating analysis with $\mathrm{mH}=125 \mathrm{GeV}$ and overlay (today's topic)

| $\Delta \lambda_{H H H} / \lambda_{H H H}$ | 500 GeV | +1 TeV |
| :---: | :---: | :---: |
| Baseline | $83 \%$ | $21 \%$ |
| LumiUP | $46 \%$ | $13 \%$ |

$500 \mathrm{GeV}: 500(1600) \mathrm{fb}^{-1}$
1 TeV: $1000(2500) \mathrm{fb}^{-1}$
including HH $->$ bbbb and $\mathrm{HH}->b b W W^{*}$

## update with $\mathrm{H}(125)$ : identical analysis strategy

(cross section reduced by $12 \%$; branching ratio reduced by $20 \%$ )

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.2) ; \quad \mathrm{Ecm}=1 \mathrm{TeV} ; \text { w/o overlay } \quad \int \mathrm{L}=2 \mathrm{ab}^{-1}
$$

$$
\mathrm{mH}=125 \mathrm{GeV}
$$

|  | $v v \mathrm{HH}-\mathrm{WWF}$ <br> $(v v b b b b)$ | BG |
| :---: | :---: | :---: |
| \#expected | 240 | $7.86 \mathrm{E}+05$ |
| after selection | $24.8(24.0)$ | 23.9 |
| significance | $3.6 \sigma$ |  |

(3.6б)
(by extrapolation $x \sqrt{(1-12 \%)(1-20 \%)}$ )

## including overlay: $\mathrm{yY}->$ hadrons

- exclusive kt algorithm.

$$
<\mathrm{N}>=4.1 @ 1 \mathrm{TeV}
$$

b optimization: R-value
and Njets

apparently a lot worse

## including overlay: full analysis

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.2) ; \quad \mathrm{Ecm}=1 \mathrm{TeV} ; \quad \mathrm{mH}=125 \mathrm{GeV} ; \mathrm{w} / \text { overlay } \quad \int \mathrm{L}=2 \mathrm{ab}^{-1}
$$

## (very preliminary)

|  | $v v H H-W W F$ <br> $(v v b b b b)$ | BG |
| :---: | :---: | :---: |
| \#expected | 240 | $7.86 \mathrm{E}+05$ |
| after selection | $12.6(12.2)$ | 12.0 |
| significance | $2.7 \sigma$ |  |

a significant impact by overlay: 25\% degradation

## look into the remained particles after overly removal


by traditional kt algorithm to remove overlay, for $\mathrm{R}=1.2$, there are still $\sim 40 \%$ (energy) of overlay remained, and having $\sim 5-15 \%$ of remained signal particles' total energy
a big trouble for jet-clustering

## impact of overlay: a bit more detailed comparison

- found by looking into the components of each jet: in $\sim 18 \%$ of all events, there are jets which are dominated by overlay particles.
- this immediately lead two signal efficiencies drop: cut on \# particles in each jet; cut on smallest b-likeness
- then caused wider Higgs mass $\longrightarrow$ again signal efficiency drop by mass cut to keep similar level of background
a better strategy than kt algorithm is needed to remove overlay, in particular for t-channel signal processes


## there was an alternative algorithm

(particle-by-particle tagging using MVA, based on d0, z0, pt, etc.; see my talk @ LCWS13)

works much better in some cases, but not all; one caveat of this algorithm is that overlay particles from primary vertex are not well identified

## a new strategy under investigation

- at first, identify some seed particles from both overlay and signal process (MVA)
- then based on those seed particles, apply certain clustering algorithm (cone or kt or any jet algorithm) to find other overlay particles around those seed particles
- good candidates of seed particles can be those from secondary vertices (if reconstructed), or those with shifted z0 but non-shifted d0

Input variable: d0


Input variable: z0


Input variable: pt


## Input variable: costheta



MVA to separate vertices from signal and overlay
(since z0 is highly correlated with $\cos \theta$ and d 0 , not used)
TMVA overtraining check for classifier: MLP

- TMVA

mva_out > 0.37: Eff_signal ~ 99.7\%; Eff_overlay ~10\%


## but...

- the vertex reconstruction efficiencies for overlay are rather row (only $20 \%$ of all events, there are overlay vertices reconstructed by LCFIPlus).
- to improve, change minimum Pt, minimum \# of TPC Hits...
- not so successful yet, try to do vertex finder only for forward low-pt particles.
- nevertheless, it would not be a big issue, since we will rely one others seeds which are just single particle based.
- ongoing...


# Happy Chinese New Year of Sheep 

## - year of good luck



## Backup

$$
e^{+}+e^{-} \rightarrow \nu \bar{\nu} H H \rightarrow \nu \bar{\nu}(b \bar{b})(b \bar{b})
$$

(full simulation @ $1 \mathrm{TeV}, \mathrm{mH}=125 \mathrm{GeV}$; without $\gamma \gamma \longrightarrow$ hadrons overlay case)


## pre-selection:

- reject events with isolated lepton ( done with MVA based IsolatedLeptonTagging processor)
- cluster all particles to four jets (Durham), each with at least 7 particles, 3rd Btagging $>0.2$ (done within LCFIPlus processors); pair those four jets to two Higgs by minimising $\chi 2$ defined by two pair masses.
final-selection:
- Visible energy < 900 GeV ; Missing Mass > 0
- tt-bar suppression (MVA): MLP_1vbbqq > 0.67
- vvZZ and vvZH suppression (MVA ): MLP_vvbbbb $>0.45$
- B-tagging: Bmax3 + Bmax $4>0.71$
signal and backgrounds (reduction table)
$\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.2) ; \quad \mathrm{Ecm}=1 \mathrm{TeV} ; \quad \mathrm{mH}=125 \mathrm{GeV} ; \quad$ w o o overlay $\quad \int \mathrm{L}=2 \mathrm{ab}^{-1}$
(preliminary)

|  | vvHH - <br> WWF <br> (vvbbbb) | vvHH <br> (ZHH) | $v v Z H$ | $v v Z Z$ | tt-bar | BG | significance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# expected | 240 | 72.2 | $3.33 \mathrm{E}+03$ | $1.72 \mathrm{E}+03$ | $7.81 \mathrm{E}+05$ | $7.86 \mathrm{E}+05$ | 0.27 |
| pre-selection | 77.1(66) | 23.3 | 472 | 781 | $2.97 \mathrm{E}+04$ | $3.1 \mathrm{E}+04$ | 0.44 |
| cut1 | 75.2(64.4) | 16 | 447 | 749 | $1.09 \mathrm{E}+04$ | $1.21 \mathrm{E}+04$ | 0.68 |
| cut2 | 57.9(50.8) | 5.48 | 260 | 227 | 397 | 890 | 1.9 |
| cut3 | 33.5(29.4) | 2.1 | 20.8 | 6.6 | 128 | 157 | 2.4 |
| cut4 | $8(24.0$ | 1.57 | 12.1 | 3.34 | 6.86 | 23.9 | 3.6 |

$$
\mathrm{nS}=24.8, \quad \mathrm{nB}=23.9 \quad \sim 3.6 \sigma
$$

(3.6 $\sigma$ by previous extrapolation)
signal and backgrounds (reduction table)
$\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.2) ; \quad \mathrm{Ecm}=1 \mathrm{TeV} ; \quad \mathrm{mH}=125 \mathrm{GeV} ; \quad$ w/ overlay $\quad \int \mathrm{L}=2 \mathrm{ab}^{-1}$
(very preliminary)

|  | $\begin{gathered} v v \mathrm{HH}- \\ \text { WWF } \\ (\nu v b b b b) \end{gathered}$ | $\begin{aligned} & v \nu H H \\ & (\mathrm{ZHH}) \end{aligned}$ | $v v Z H$ | $v v Z Z$ | tt-bar | BG | significance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# expected | 240 | 72.2 | $3.33 \mathrm{E}+03$ | $1.72 \mathrm{E}+03$ | $7.81 \mathrm{E}+05$ | $7.86 \mathrm{E}+05$ | 0.27 |
| pre-selection | 69.1(54.5) | 19 | 473 | 600 | $2.94 \mathrm{E}+04$ | $3.05 \mathrm{E}+04$ | 0.4 |
| cut1 | 66.2(52.4) | 12.2 | 438 | 570 | $5.51 \mathrm{E}+03$ | $6.53 \mathrm{E}+03$ | 0.82 |
| cut2 | 54.4(44.1) | 4.09 | 322 | 392 | 759 | $1.48 \mathrm{E}+03$ | 1.4 |
| cut3 | 19.6(16.5) | 0.445 | 19 | 6 | 109 | 134 | 1.6 |
| cut4 | $6(12$ | 0.299 | 7.51 | 2.24 | 1.97 | 12.0 | 2.7 |

$$
\mathrm{nS}=12.6, \quad \mathrm{nB}=12.0 \quad \sim 2.7 \sigma
$$

( $25 \%$ degradation than case $\mathrm{w} / \mathrm{o}$ overlay!!

## MVA output


inputs:

- Evis, MissPt, MissMass
- W mass case of tt4j and tt5j reconstruction
- tau mass in case of tt5j
- Pmax and Econe of leptons
- M(H1), M(H2)
- $\mathrm{Y}_{5-\mathrm{>}}$ see MVA details in LC-REP-2013-003


## MVA overtraining test



## MLP_lvbbqq



MLP_vvbbbb_vvbbh

## including overlay: $\mathrm{yY}->$ hadrons

- exclusive kt algorithm $(\mathrm{NJet}=5)$




## Higǵs self-coupling @ 1 TeV

$$
\mathrm{P}(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.2) \quad e^{+}+e^{-} \rightarrow \nu \bar{\nu} H H \quad M(H)=120 \mathrm{GeV} \quad \int L d t=2 \mathrm{ab}^{-1}
$$

|  | Expected | After Cut |
| :---: | :---: | :---: |
| vvhh (WW F) | 272 | 35.7 |
| vvhh (ZHH) | 74 | 3.88 |
| BG (tt/vvZH) | $7.86 \times 10^{5}$ | 33.7 |
| significance | 0.3 | 4.29 |

- better sensitive factor
- benefit more from beam polarisation
- BG lt x-section smaller
- more boosted b-jets

$$
\frac{\Delta \sigma}{\sigma} \approx 23 \% \quad \frac{\Delta \lambda}{\lambda} \approx 18 \%
$$

Double Higgs excess significance: > To
Higgs self-coupling significance: $>5 \sigma$

DBß analysis (no gam-gam overlay):
signal and backgrounds (reduction table)
Polarization: $(\mathrm{e}-\mathrm{e}+)=(-0.8,+0.2) E_{\mathrm{cm}}=1 \mathrm{TeV}, M_{H}=120 \mathrm{GeV} \quad \mathrm{L}=2 \mathrm{ab}^{-1}$

|  | Expected | Generated | pre-selction | cut1 | cut2 | cut3 | cut4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vvhh (WW F) | 272 | $1.05 \times 10^{5}$ | 127 | 107 | 77.2 | 47.6 | 35.7 |
| vvhh (ZHH) | 74 | $2.85 \times 10^{5}$ | 32.7 | 19.7 | 6.68 | 4.88 | 3.88 |
| vvbbbb | 650 | $2.87 \times 10^{5}$ | 553 | 505 | 146 | 6.21 | 4.62 |
| vvccbb | 1070 | $1.76 \times 10^{5}$ | 269 | 242 | 63.3 | 2.69 | 0.19 |
| yyxyyx | $3.74 \times 10^{5}$ | $1.64 \times 10^{6}$ | 18951 | 4422 | 38.5 | 26.7 | 1.83 |
| yyxyev | $1.50 \times 10^{5}$ | $6.21 \times 10^{5}$ | 812 | 424 | 44.4 | 11 | 0.73 |
| yyxylv | $2.57 \times 10^{5}$ | $1.17 \times 10^{6}$ | 13457 | 4975 | 202 | 84.5 | 4.86 |
| vvZH | 3125 | $7.56 \times 10^{4}$ | 522 | 467 | 257 | 30.6 | 17.6 |
| BG | $7.86 \times 10^{5}$ |  | 34597 | 11054 | 758 | 167 | 33.7 |
| significance | 0.3 |  | 0.68 | 1.01 | 2.67 | 3.25 | 4.29 |

$\Delta \sigma$
$\frac{\Delta \lambda}{\lambda} \approx 20 \% \underset{\substack{(18 \%) \\ \text { (with weighting) }}}{(1)}$
Double Higgs excess significance: $7.2 \sigma$

