# update of vvHH@1 TeV

Junping Tian (KEK)

ILD Analysis & Software Meeting, Feb. 18, 2015

recent poster at HPNP 2015: <u>http://jodo.sci.u-toyama.ac.jp/theory/HPNP2015/Slides/HPNP2015Poster1/</u> <u>Tian\_20150212.pdf</u>

### status of Higgs self-coupling analysis



ZHH—>Z(bb)(bb) @ 500 GeV: Claude —kinematic fitting, matrix element method, etc.

- HH—>bb(WW\*): Masakazu —- flavor tagging, PID, etc.
- vvHH—>vv(bb)(bb) @ 1 TeV: Junping —updating analysis with mH=125GeV and overlay (today's topic)

| $\Delta \lambda_{HHH} / \lambda_{HHH}$ | 500 GeV | + 1 TeV |  |  |
|----------------------------------------|---------|---------|--|--|
| Baseline                               | 83%     | 21%     |  |  |
| LumiUP                                 | 46%     | 13%     |  |  |

500 GeV: 500 (1600) fb<sup>-1</sup> 1 TeV: 1000 (2500) fb<sup>-1</sup> including HH—>bbbb and HH—>bbWW\*

LC-REP-2013-003 J. Tian @ LCWS14

C. Dürig @ AWLC14

M. Kurata @ ECFA2013

2

### update with H(125): identical analysis strategy

(cross section reduced by 12%; branching ratio reduced by 20%)

P(e-,e+) = (-0.8,+0.2); Ecm = 1 TeV; w/o overlay

$$\int L = 2 \ ab^{-1}$$

3

mH = 125 GeV

mH = 120 GeV

|                                                              | vvHH -WWF<br>(vvbbbb) | BG       |  | ννΗΗ -WWF<br>(ννbbbb) | BG       |  |
|--------------------------------------------------------------|-----------------------|----------|--|-----------------------|----------|--|
| #expected                                                    | 240                   | 7.86E+05 |  | 272                   | 7.86E+05 |  |
| after selection                                              | 24.8(24.0)            | 23.9     |  | 35.7                  | 33.7     |  |
| significance                                                 | 3.0                   | 6σ       |  | 4.3                   | 3σ       |  |
| (3.6σ) <b>↓</b>                                              |                       |          |  |                       |          |  |
| preliminary) (by extrapolation x $\sqrt{(1-12\%)(1-20\%)}$ ) |                       |          |  |                       |          |  |

### including overlay: γγ->hadrons



apparently a lot worse

### including overlay: full analysis

P(e-,e+) = (-0.8,+0.2); Ecm = 1 TeV; mH = 125 GeV; w/ overlay  $L = 2 ab^{-1}$ 

(very preliminary)

|                 | vvHH -WWF<br>(vvbbbb) | BG       |  |  |
|-----------------|-----------------------|----------|--|--|
| #expected       | 240                   | 7.86E+05 |  |  |
| after selection | 12.6(12.2) 12.0       |          |  |  |
| significance    | 2.7σ                  |          |  |  |

a significant impact by overlay: 25% degradation

## look into the remained particles after overly removal

![](_page_5_Figure_1.jpeg)

by traditional kt algorithm to remove overlay, for R=1.2, there are still ~40% (energy) of overlay remained, and having ~5-15% of remained signal particles' total energy

a big trouble for jet-clustering

### impact of overlay: a bit more detailed comparison

- found by looking into the components of each jet: in ~18% of all events, there are jets which are dominated by overlay particles.
- this immediately lead two signal efficiencies drop: cut on #particles in each jet; cut on smallest b-likeness
- then caused wider Higgs mass —> again signal efficiency drop by mass cut to keep similar level of background

a better strategy than kt algorithm is needed to remove overlay, in particular for t-channel signal processes

### there was an alternative algorithm

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

works much better in some cases, but not all; one caveat of this algorithm is that overlay particles from primary vertex are not well identified

### a new strategy under investigation

- at first, identify some seed particles from both overlay and signal process (MVA)
- then based on those seed particles, apply certain clustering algorithm (cone or kt or any jet algorithm) to find other overlay particles around those seed particles
- good candidates of seed particles can be those from secondary vertices (if reconstructed), or those with shifted z0 but non-shifted d0

### characteristics of vertices from signal and overlay

secondary vertices by LCFIPlus (BuildUP vertices)

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

mva\_out > 0.37: Eff\_signal ~ 99.7%; Eff\_overlay ~10%

- the vertex reconstruction efficiencies for overlay are rather row (only 20% of all events, there are overlay vertices reconstructed by LCFIPlus).
- to improve, change minimum Pt, minimum # of TPC Hits...
- not so successful yet, try to do vertex finder only for forward low-pt particles.
- nevertheless, it would not be a big issue, since we will rely one others seeds which are just single particle based.
- ongoing...

# Happy Chinese New Year of Sheep — year of good luck

![](_page_12_Picture_1.jpeg)

# Backup

### $e^+ + e^- \to \nu \bar{\nu} H H \to \nu \bar{\nu} (b\bar{b}) (b\bar{b})$

(full simulation @ 1 TeV, mH = 125 GeV; without  $\gamma\gamma$ —>hadrons overlay case)

![](_page_14_Figure_2.jpeg)

### pre-selection:

- reject events with isolated lepton ( done with MVA based IsolatedLeptonTagging processor)
- cluster all particles to four jets (Durham), each with at least 7 particles, 3rd Btagging > 0.2 (done within LCFIPlus processors); pair those four jets to two Higgs by minimising χ2 defined by two pair masses.

### final-selection:

| • | Visible energy < 900 GeV; Missing Mass > 0          | (cut1) |
|---|-----------------------------------------------------|--------|
| • | tt-bar suppression (MVA): MLP_lvbbqq > 0.67         | (cut2) |
| • | vvZZ and vvZH suppression (MVA ): MLP_vvbbbb > 0.45 | (cut3) |

• B-tagging: Bmax3 + Bmax4 > 0.71 (cut4)

signal and backgrounds (reduction table)

 $P(e-,e+) = (-0.8,+0.2); \quad Ecm = 1 \text{ TeV}; \quad mH = 125 \text{ GeV}; \quad w/o \text{ overlay} \qquad \int L = 2 \text{ ab}^{-1}$ (preliminary)

|               | vvHH -<br>WWF<br>(vvbbbb) | ννΗΗ<br>(ZHH) | ννΖΗ     | ννZZ     | tt-bar   | BG       | significance |
|---------------|---------------------------|---------------|----------|----------|----------|----------|--------------|
| #expected     | 240                       | 72.2          | 3.33E+03 | 1.72E+03 | 7.81E+05 | 7.86E+05 | 0.27         |
| pre-selection | 77.1(66)                  | 23.3          | 472      | 781      | 2.97E+04 | 3.1E+04  | 0.44         |
| cut1          | 75.2(64.4)                | 16            | 447      | 749      | 1.09E+04 | 1.21E+04 | 0.68         |
| cut2          | 57.9(50.8)                | 5.48          | 260      | 227      | 397      | 890      | 1.9          |
| cut3          | 33.5(29.4)                | 2.1           | 20.8     | 6.6      | 128      | 157      | 2.4          |
| cut4          | 24.8(24.0)                | 1.57          | 12.1     | 3.34     | 6.86     | 23.9     | 3.6          |

nS = 24.8,  $nB = 23.9 \sim 3.6\sigma$ (3.6 $\sigma$  by previous extrapolation) signal and backgrounds (reduction table)

 $L = 2 \text{ ab}^{-1}$ 

P(e-,e+) = (-0.8,+0.2); Ecm = 1 TeV; mH = 125 GeV; w/ overlay (very preliminary)

|               | vvHH -<br>WWF<br>(vvbbbb) | ννΗΗ<br>(ZHH) | ννZH     | ννΖΖ     | tt-bar   | BG       | significance |
|---------------|---------------------------|---------------|----------|----------|----------|----------|--------------|
| #expected     | 240                       | 72.2          | 3.33E+03 | 1.72E+03 | 7.81E+05 | 7.86E+05 | 0.27         |
| pre-selection | 69.1(54.5)                | 19            | 473      | 600      | 2.94E+04 | 3.05E+04 | 0.4          |
| cut1          | 66.2(52.4)                | 12.2          | 438      | 570      | 5.51E+03 | 6.53E+03 | 0.82         |
| cut2          | 54.4(44.1)                | 4.09          | 322      | 392      | 759      | 1.48E+03 | 1.4          |
| cut3          | 19.6(16.5)                | 0.445         | 19       | 6        | 109      | 134      | 1.6          |
| cut4          | 12.6(12.2)                | 0.299         | 7.51     | 2.24     | 1.97     | 12.0     | 2.7          |

nS = 12.6,  $nB = 12.0 \sim 2.7\sigma$ (25% degradation than case w/o overlay!)

### MVA output

![](_page_17_Figure_1.jpeg)

inputs:

- Evis, MissPt, MissMass
- W mass case of tt4j and tt5j reconstruction
- tau mass in case of tt5j
- Pmax and Econe of leptons
- M(H1), M(H2)
- Y<sub>5-->4</sub>

- two Z masses in case of vvZZ reconstruction
- Z and Higgs masses in case of vvZH reconstruction
- M(H1), M(H2)
- see MVA details in LC-REP-2013-003

#### MVA overtraining test

![](_page_18_Figure_1.jpeg)

MLP\_lvbbqq

MLP\_vvbbbb\_vvbbh

### including overlay: $\gamma\gamma$ — >hadrons

exclusive kt algorithm (NJet = 5)

![](_page_19_Figure_2.jpeg)

20

#### DBD full simulation

Higgs self-coupling @ 1 TeV P(e-,e+)=(-0.8,+0.2)  $e^+ + e^- \rightarrow \nu \bar{\nu} HH$  M(H) = 120 GeV  $\int Ldt = 2ab^{-1}$ 

|                      | Expected             | After Cut |
|----------------------|----------------------|-----------|
| vvhh (WW F)          | 272                  | 35.7      |
| vvhh (ZHH)           | 74                   | 3.88      |
| BG (tt/ $\nu\nu$ ZH) | 7.86×10 <sup>5</sup> | 33.7      |
| significance         | 0.3                  | 4.29      |

- better sensitive factor
- benefit more from beam polarisation
- BG tt x-section smaller
- more boosted b-jets

![](_page_20_Figure_7.jpeg)

Double Higgs excess significance:  $> 7\sigma$ 

Higgs self-coupling significance:  $> 5\sigma$ 

DBD analysis (no gam-gam overlay):

signal and backgrounds (reduction table) Polarization: (e-,e+)=(-0.8,+0.2)  $E_{cm} = 1 \text{ TeV}, M_H = 120 \text{ GeV}$   $L = 2 \text{ ab}^{-1}$ 

|              | Expected             | Generated            | pre-selction | cut1  | cut2 | cut3 | cut4 |
|--------------|----------------------|----------------------|--------------|-------|------|------|------|
| ννhh (WW F)  | 272                  | $1.05 \times 10^{5}$ | 127          | 107   | 77.2 | 47.6 | 35.7 |
| vvhh (ZHH)   | 74                   | 2.85×10 <sup>5</sup> | 32.7         | 19.7  | 6.68 | 4.88 | 3.88 |
| vvbbbb       | 650                  | 2.87×10 <sup>5</sup> | 553          | 505   | 146  | 6.21 | 4.62 |
| vvccbb       | 1070                 | $1.76 \times 10^{5}$ | 269          | 242   | 63.3 | 2.69 | 0.19 |
| уухуух       | 3.74×10 <sup>5</sup> | 1.64×10 <sup>6</sup> | 18951        | 4422  | 38.5 | 26.7 | 1.83 |
| уухуеν       | 1.50×10 <sup>5</sup> | 6.21×10 <sup>5</sup> | 812          | 424   | 44.4 | 11   | 0.73 |
| yyxylv       | 2.57×10 <sup>5</sup> | 1.17×10 <sup>6</sup> | 13457        | 4975  | 202  | 84.5 | 4.86 |
| ννΖΗ         | 3125                 | 7.56×10 <sup>4</sup> | 522          | 467   | 257  | 30.6 | 17.6 |
| BG           | 7.86×10 <sup>5</sup> |                      | 34597        | 11054 | 758  | 167  | 33.7 |
| significance | 0.3                  |                      | 0.68         | 1.01  | 2.67 | 3.25 | 4.29 |

 $\frac{\Delta\lambda}{\lambda} \approx 20\% \quad (18\%)$  (with weighting) Double Higgs excess significance:  $7.2\sigma$ 

 $\frac{\Delta\sigma}{\sigma}\approx 23\%$ 

 $\sigma$