Comparison of B-field parametrization with field maps

Presenter Christopher Milke
Research Collaboraters:
Undergraduate Olivia Johnson
Undergraduate Christopher Milke Professor Bruce Schumm

Santa Cruz Institute for Particle Physics

Takashi's Parameterization Code

real $\times(3), f(3)$, xquad(3), fquad(3), $r, u, v, b z$, br
real zsol/630./, pi/3.1415927/, phi36/0.1745329/, phi16/0.3926991/ c solenoid compensating Bx field
integer icomp/0/
c SiD anti-DID
real a0/0.0015343/, a1/0.18476/, a2/0.050422/, a3/-0.092768/,

- a4/0.030064/, a5/-0.0039413/, a6/0.0001886/
real $z, z z$

```
c iquad = 0 solenoid
    real b0/10.5/
    f(1) =0.
    f(2) =0.
    f(3) = 0.
```

 1 incoming beam line quad
 2 dump line quad
 3 incoming beam line sextupole
 4 incoming beam line octuple
 integer \(\operatorname{iquad}(100) / 21^{*} 0,1,-1,4,-4,3,-3,1,-1,3,-3,4,-4\),
 \(-2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,53 * 0 /\)
 c---------------------------
if $(a b s(x(3))+1 t+z s o l)$ then
$r=\operatorname{sqrt}(x(1) * * 2+x(2) * * 2)$
call solenoid ($x(3), r, b z, b r$)
if $(r+9 t+0,0)$ then
$u=x(1) / r$
$v=x(2) / r$
$f(1)=b r * u$
$f(2)=b r * v$
$f(3)=b z$

$z=a b s(x(3)) * 0.01$
$z z=z^{*} z$
$b x=a 0+a 1^{*} z^{+a} 2^{*} z z+a 3^{*} z^{*} z z+a 4^{*} z z^{*} z z^{+a 5^{*} z z^{*} z z^{*} z+a 6^{*} z z^{*} z z^{*} z z}$
c + DID, - DIDNT
$i f(x(3)+1 t, 0,0) b x=-b x$
$f(1)=f(1)+b x$
end if

Our Interpretation

- $\mathrm{A} 0=0.0015343$
- $\mathrm{A} 1=0.18476$
- $\mathrm{A} 2=0.050422$
- $\mathrm{A} 3=-0.092768$
- $A 4=0.030064$
- $A 5=-0.0039413$
- $\mathrm{A} 6=0.0001886$

Bfield_x $=\left|A 0+A 1^{*} z+A 2^{\star} z^{\wedge} 2+A 3^{\star} z^{\wedge} 3+A 4^{\star} z^{\wedge} 4+A 5^{\star} z^{\wedge} 5+A 6^{\star} z^{\wedge} 6\right|$

Process

- We were given Takashi's parameterization function and a set of files providing the magnetic field within a range of -200 to 200 (cm?). Each file corresponded to one slice along the z-axis
- We took each file and individually interpolated the points to a regularly spaced grid
- We took a collection of x, y points, and plotted the magnetic field for those x, y points at every z value, comparing them to Takashi's function

Check of SCIPP interpolation of field map

A plot of the x and y axis vs $B x, B y$, and $B z$ in turn, for a particular value of z.

This shows that our interpolated magnetic field matches the original field.

Note that the parameterization only analyzes B_x (on right)
*Original Points = Field Map

Because we used a square grid, we have points which extend beyond the actual range of the field. In our selection of x, y points to compare to Takashi's field, we only use points covered by the original files.

Comparison of interpolated points to Takashi's parameterization.

Note that Takashi's Field is mirrored across $z=0$, but the interpolated field continues with the same slope.

Conclusion

- The magnetic field does not line up with our interpretation of Takashi's function
- We may be interpreting Takashi's code incorrectly, or missing key information needed to use it properly
- If not, then the parameterization does not describe the magnetic field
- The field depends on more than z
- The field is effectively linear in z, with slopes that vary with x / y
- The field does not reverse at negative z, but continues with the same slope

