tth study Lepton ID with BDT

2015/02/27 Yuji Sudo Kyushu University

Motivation

- cut based lepton ID is useful to find isolated lepton with small systematic uncertainty but
- it is important to increase signal acceptance for tth study.
- MVA lepton identification will be improve lepton ID efficiency and miss ID fraction.
 → signal acceptance will be improved.
- -- issues related to MVA lepton ID method are
- specified lepton ID method to tth study
- more complicate lepton ID method than cut-based lepton selection

training and test sample

signal : e, mu, tau(e), tau(mu), tau(1-prong), tau(3-prong) training and test samples: tth \rightarrow 2l2nbbbb

background: mu, tau(e), tau(mu), tau(1-prong), tau(3-prong), b jet, lf jet training and test samples: ttZ for light flavor jet

: tth \rightarrow 2l2nbbbb for the other background

3

• PFOs which can be traced to MC information are used to make samples.

BDTs:

Signals

Backgrounds	5
-------------	---

	е	mu	tau(e)	tau(mu)	tau 1-prong	tau 3-prong	bjet	lf jet
е	-	х	Х	x	х	х	х	х
mu		-	х	х	х	х	х	х
tau(e)			-	х	х	х	х	х
tau(mu)				-	х	х	х	х
tau(1-prong)					-	х	x	х
tau(3-prong)						-	х	х

Input variables are chosen from the following parameters

- hadOvEM: E_{hcal}/E_{ecal}
- calEovE: (E_{hcal}+E_{ecal})/Epfo
- coneE2woSeed: E_{cone2} without seed E_{PFO}
- isoCutOld: 6(E_{PFO}-15)² (coneE2woSeed)²
- pfoR0 : sqrt(trkD0²+trkZ0²)
- coneE1OvConeE2: E_{cone1}/E_{cone2}
- coneMass1: reconstructed mass with PFOs in cone1
- coneMass3: reconstructed mass with PFOs in cone3
- clusterShape0: χ2 of fit
- clusterShape1: maximum deposited energy (GeV)
- clusterShape2: shower Max (mm)
- clusterShape3: transverse absorption length(mm)
- clusterShape5: shower Max/ Expected shower Max
- clusterShape16: xl20 (mm)
- yokuE: deposited energy in the yoku
- pfoe: PFO energy
- pt: Pt of PFO
- cone1E
- maxTrkEInCone13: Maximum energy of a PFO with track between cone1 and cone2
- nNeutralCone1: Number of PFOs with no track in cone1
- eNeutralCone1: Energy sum of PFOs with no track in cone1

(*1) cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93

(*2)cluster shape variables

- choose the highest energy cluster
- electron shower shaped is used to fit

(*3) transverse absorption length : distance btw shower center and location where cluster energy goes down to 1/e

(*4) xl20:length to the positon where the deposited energy reaches 80 % of total energy on shower axis

> (*4) deposited energy

input variables e-mu 1 signal:e, background:mu

- cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93
- cluster shape variables
- choose the highest energy cluster
- electron shower shape is used to fit

cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93

 cluster shape variables choose the highest energy cluster transverse absorption length : distance btw shower center and location where cluster energy goes down to 1/e

BDT Output, signal: electron

pre-cut : PFO energy > 2 GeV, PFO with track additional pre-cut for electron or muon: PFO energy > 5 GeV

background: muon

TWVA overtraining check for classifier: BDT

background: tau(h)

background: tau(e)

background: tau (µ)

background: If jet

TMVA overtraining check for classifier: BDT

background: b jet

TMVA overtraining check for classifier: BDT Signal (test sample) Signal (training sample) õ (1/N) dN/ Background (test sample) Background (training sample) 3.5 -Kolmogorov-Smirnov test: signal (background) probability = 0.205 (0.92) 2.5 1.5 0.5 -0.6 -0.4 -0.2 Ó 0.2 0.4 0.6 BDT response

BDT Output, signal: muon

pre-cut : PFO energy > 2 GeV, PFO with track additional pre-cut for electron or muon: PFO energy > 10 GeV

background: muon

background: tau(e)

background: tau (µ)

background: tau(h)

background: b jet

background: If jet

BDT Output, signal: tau(e)

pre-cut : PFO energy > 2 GeV, PFO with track

background: muon

background: tau(e)

background: tau (µ)

background: If jet

background: b jet

TMVA overtraining check for classifier: BDT

BDT Output, signal: tau(m)

pre-cut : PFO energy > 2 GeV, PFO with track

background: muon

background: tau(e)

background: tau (µ)

background: tau(h)

background: b jet

background: If jet

BDT Output, signal: tau 1-prong (top), tau 3-prong (bottom)

pre-cut : PFO energy > 2 GeV, PFO with track

background: b jet

TMVA overtraining check for classifier: BDT õ Signal (test sample) Signal (training sample) /ND (N/L) Background (test sample) Background (training sample) -Kolmogorov-Smirnov test: signal (background) probability = 0.345 (0.746 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 **BDT** response

background: If jet

background: If jet

tth 2l2n

• Lepton ID efficiency with TMVA BDT (cut base) lepton selection

particles

* in this table,0 means less than 0.01%

(%)	elec	muon	taue	taum	tauh1	tauh3	bjet	ljet
elec	<mark>92</mark> (85.08)	0 (0)	43.42 (28.82)	0 (0)	0.42 (0.31)	0 (0.06)	0 (0)	N/A
muon	0 (0)	<mark>95.11</mark> (92.14)	0 (0)	40.36 (18.19)	0.03 (0.01)	0 (0)	0 (0)	N/A
taue	0.94 (2.24)	0 (0)	<mark>29.32</mark> (18.76)	0 (0)	0.33 (0.42)	0 (0)	0.04 (0.02)	N/A
taum	0 (0)	1.34 (2.66)	0 (0)	<mark>34.22</mark> (35.07)	0.11 (0.09)	0 (0)	0.04 (0.03)	N/A
tauh1	0.28 (3.56)	0.06 (0.53)	0.71 (15.4)	0.04 (12.46)	<mark>55.64</mark> (46.21)	0 (0)	0.04 (0.06)	N/A
tauh3	0 (0)	0 (0.01)	0.04 (0.08)	0 (0.04)	0 (0)	<mark>49.29</mark> (38.74)	0.01 (0.04)	N/A
nonlep	<mark>6.76</mark> (9.09)	<mark>3.47</mark> (4.65)	<mark>26.49</mark> (36.91)	<mark>25.37</mark> (34.22)	<mark>43.44</mark> (52.92)	<mark>50.7</mark> (61.18)	<mark>99.84</mark> (99.83)	N/A

tth 2l2n

• Lepton ID efficiency with TMVA BDT (cut base) lepton selection

particles

* in this table,0 means less than 0.01%

(%)	etec	muon	taue	taum	tauh1	tauh3	bjet	ljet
elec	92	0	43.42	0	0.42	0	0	N/A
	(85.08)	(0)	(28.82)	(0)	(0.31)	(0.06)	(0)	•
muon	0	95.11	9	40.36	0.03	0	0	NI / A
muon	(0)	(92.14)	(0)	(18.19)	(0.01)	(0)	(0)	N/A
t aa	0.94	0	29.32	Q	0.33	0	0.04	NI / A
taue	(2.24)	(0)	(18.76)	(0)	(0.42)	(0)	(0.02)	N/A
••••••	0	1.34	0	34.22	0.11	0	0.04	N1 / A
taum	(0)	(2.66)	(0)	(35.07)	(0.09)	(0)	(0.03)	N/A
1 h 1	0.28	0.06	0.71	0.04	55.64	0	0.04	N1 / A
tauni	(3.56)	(0.53)	(15.4)	(12.46)	(46.21)	(0)	(0.06)	N/A
1b 2	0	0	0.04	0	0	49.29	0.01	N1 / A
tauns	(0)	(0.01)	(0.08)	(0.04)	(0)	(38.74)	(0.04)	N/A
	6.76	3.47	26.49	25.37	43.44	50.7	99.84	
noniep	(9.09)	(4.65)	(36.91)	(34.22)	(52.92)	(61.18)	(99.83)	N/A 13

tth 2l2n

• Lepton ID efficiency with TMVA BDT (cut base) lepton selection

particles

* in this table,0 means less than 0.01%

(%)	elec	muon	taue	taum	tauh1	tauh3	bjet	ljet
elec	<mark>92</mark> (85.08)	0 (0)	43.42 (28.82)	0 (0)	0.42 (0.31)	0 (0.06)	0 (0)	N/A
muon	0 (0)	<mark>95.11</mark> (92.14)	0 (0)	40.36 (18.19)	0.03 (0.01)	0 (0)	0 (0)	N/A
taue	0.94 (2.24)	0 (0)	<mark>29.32</mark> (18.76)	0 (0)	0.33 (0.42)	0 (0)	0.04 (0.02)	N/A
taum	0 (0)	1.34 (2.66)	0 (0)	<mark>34.22</mark> (35.07)	0.11 (0.09)	0 (0)	0.04 (0.03)	N/A
tauh1	0.28 (3.56)	0.06 (0.53)	0.71 (15.4)	0.04 (12.46)	<mark>55.64</mark> (46.21)	0 (0)	0.04 (0.06)	N/A
tauh3	0 (0)	0 (0.01)	0.04 (0.08)	0 (0.04)	0 (0)	<mark>49.29</mark> (38.74)	0.01 (0.04)	N/A
nonlep	<mark>6.76</mark> (9.09)	<mark>3.47</mark> (4.65)	<mark>26.49</mark> (36.91)	25.37 (34.22)	<mark>43.44</mark> (52.92)	<mark>50.7</mark> (61.18)	<mark>99.84</mark> (99.83)	N/A

ttZ

• Lepton ID efficiency with TMVA BDT (cut base) lepton selection

particles

* in this table,0 means less than 0.01%

(%)	elec	muon	taue	taum	tauh1	tauh3	bjet	ljet
	90.92	0.01	44.3	0	0.15	0	0.01	0.01
elec	(84.62)	(0.01)	(28.27)	(0)	(0.11)	(0.11)	(0.02)	(0.02)
muon	0	94.93	0	39.98	0	0.11	0.01	0
muon	(0)	(92.23)	(0)	(18.28)	(0)	(0)	(0)	(0.01)
taua	1.16	0	28.08	0	0.34	0	0.02	0
laue	(1.96)	(0.01)	(20.01)	(0)	(0.23)	(0)	(0.02)	(0)
taum	0	1.59	0	33.42	0.15	0	0.02	0
laum	(0)	(2.93)	(0)	(36.28)	(0.07)	(0)	(0.03)	(0)
tauh1	0.31	0.05	0.56	0	54.97	0	0.01	0.38
launi	(3.14)	(0.49)	(15.08)	(10.98)	(45.37)	(0)	(0.02)	(0.4)
tauh2	0.09	0	0	0	0	48.14	0	0.18
launs	(0.05)	(0)	(0.08)	(0)	(0)	(37.99)	(0.02)	(0.2)
nonlon	7.5	3.39	27.03	26.59	44.36	51.73	99.89	99.4
noniep	(10.2)	(4.29)	(36.62)	(34.44)	(54.19)	(61.88)	(99.86)	(99,34)

Summary1

- Prepare BDT Lepton ID method
- Lepton ID efficiency is improved
 - ID efficiency is slightly increased
 - miss ID rate is slightly decreased
- I hope sensitivity of tth($h \rightarrow bb$) channel will be improved

some issues

- cluster shape values has sometimes "Nan" value.
 - \rightarrow PFOs with "Nan" input value are rejected to MVA samples
- some BDT outputs have peaked distribution
 Is it acceptable or not?
- many input variables are used

tth study with increased MC stat.

tth, ttz, ttbb: 100k~200k events tbW(DBD samples): 10k~100k events

Expected # of events @ 500fb⁻¹

- $\sqrt{s} = 500 \text{ GeV}$, Mh = 125 GeV, (Pe⁻, Pe⁺)=(-0.8, +0.3)
- production cross section

• Branching ratio

Process	σ (fb)	Decay mode	Branching ratio
e⁻e⁺ → tth	0.485	h→bb	0.577
$a^{-}a^{+} \rightarrow \pm \pm 7$	1 074	tt→bqqbqq	0.457
	1.974	tt→blvbqq	0.438
e⁻e⁺ → ttg(bb)	1.058	tt→blvblv	0.105
e⁻e⁺ → tbW	979.8		

expected # of signals and Backgrounds(@500fb⁻¹)

tth(tt6j, hbb)	63.9	tth(ttln4j,hbb)	61.3
tth(ttall, hnobb)	102.6	ttZ	987
tth(ttlvlv2b, hbb)	14.6	ttg(bb)	529
		tbW	489902

tth analysis

- interference term is negligible
- counting analysis with cut based event selection
- Use Kt clustering only for removing low Pt background
- lepton ID (cut base)
- muon selection
- electron selection
- tau (leptonic decay)
- tau (hadronic decay)
- forced 8 jets clustering & 0 isolated lepton → 8 jets channel
- forced 6 jets clustering & 1 isolated lepton → lv6jets channel
- forced 4 jets clustering & 2 isolated leptons → 2l2v 4jets channel

In this analysis, higgs decays into two b jets

• require at least 4 b jets (b tagging: LCFIPlus)

Event Selection

- signal topology
- ✓ Y cut (Jet clustering : Durham algorithm)
- \checkmark isolated lepton selection
- ✓ b jet candidate ≥ 4

- detector acceptance $|\text{Jet } \cos \theta| \le 0.99$
- jet pairing angle between 2 b jets of h candidate $M_{W^{\prime}}\,M_{top}$

- kinematics cut
- Leading 2 Jet Energy Sum
 8jets mode, lowest 3 Jet Energy Sum
 6jets mode, lowest 2 Jet Energy Sum
 4jets mode, lowest jet Energy
- ✓ Missing momentum > 20 GeV (for 4, 6jtes mode)
- reconstructed mass
- ✓ top candidate Mjjj ≥ 140 GeV
- ✓ higgs candidate Mjj ≥ 80 GeV
- ✓ h candidate Mjj cut to maximize sensitivity
- * tbW shape is used 2 b tagged category's shape.

Higgs candidate Mjj (GeV)

Summary2 & Conclusions

Signal Acceptance after all event selection	Cut-based lepton ID	BDT lepton ID
tth→8jets	22.5 %	23.0 %
tth→In+6jets	16.3 %	16.6 %
tth→2l2n+4b	16.0 %	17.0 %

 \sqrt{s} = 500 GeV, 500 fb⁻¹, P(e-,e+)=(-0.8,+0.3)

$S/\sqrt{S} + E$
: 2.06
: 1.95
: 0.72

tbW event acceptance is very low
 * Only 0
 40 events are passed tth event

* Only 0 - 40 events are passed tth event selection

• tbW event estimation with large stat. is important.

At least 1,000 times of tbW MC stat. is need for cut-based analysis more than 1,000 times of tbW MC stat. is need for MVA analysis (current status: MC stat. is 10k~100k for each tbW category) ²⁴

Backup

Lepton ID

Event Selection

- Jet clustering : Durham algorithm $Y_{ij} = \frac{2\min\{E_i^2, E_j^2\}(1 \cos \theta)}{E_{ij}^2}$
 - forced 8 jet clustering for $tth \rightarrow x_j$ ets channel

 \checkmark "Y₈₇ > 0.00055" + "Y₈₇ <= 0.00055 & & Y₇₆ > 0.0012"

- forced 6 jet clustering for tth \rightarrow lv+6 jets channel
- \checkmark "Y₆₅ > 0.00165" + "Y₆₅ <= 0.00165 & Y₅₄ > 0.005"
- Isolated Lepton

Definition

$$\cos\theta_{\rm cone} = 0.98$$

E_{cone} < $\sqrt{6(Epfo - 15)}$

(old definition)

✓ require no(one) Isolated lepton to 8jet(lv+6jet) channel

- ✓ b candidate jets ≥ 4 (b likeness >=0.85, 0.8, 0.6, 0.2)
- reject events with very forward jets
- ✓ |Jet $\cos\theta$ | ≤ 0.99
- events with large missing momentum
- ✓ MP > 20 GeV

Jet pairing, $\chi 2$ Cut

- \sqrt{s} = 500GeV is near by $\chi^2 =$ threshold of the tth production
 - P_{higgs} should be small
 - Dijet angle becomes large
- → Angle information between higgs candidate jets is effective to choose correct jet pair.
- try all combination and choose a pair with minimum χ^2 value

reject large χ^2 events $\checkmark \chi^2 \le 11.2$

$$\left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs jj)}{\sigma_{\Delta angle(higgs jj)}} \right)^2$$

$$+ \left(\frac{m_{j_3 j_4 j_5} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_4 j_5} - M_W}{\sigma_{M_W}} \right)^2$$

$$+ \left(\frac{m_{j_6 j_7 j_8} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_7 j_8} - M_W}{\sigma_{M_W}} \right)^2$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80. 5GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

higgs and top pairing, χ2 Cut

 $\chi^2 =$

Angle information between higgs candidate jets is effective to choose correct jet pair.

A W mass is reconstructed with Isolated lepton and Missing P

• try all combination and choose a pair with minimum χ^2 value

reject large χ^2 events $\checkmark \chi^2 \le 16.5$

$$\left(\frac{\Delta angle(j_1, j_2) - \Delta angle(higgs jj)}{\sigma_{\Delta angle(higgs jj)}} \right)^2 \\ + \left(\frac{m_{j_3 j_4 j_5} - M_{top}}{\sigma_{M_{top}}} \right)^2 + \left(\frac{m_{j_4 j_5} - M_W}{\sigma_{M_W}} \right)^2 \\ + \left(\frac{m_{j_6 l\nu} - M_{top}}{\sigma_{M_{top}}} \right)^2$$

require b likeness ≥ 0.2 to j_1 , j_2 , j_3 , j_6

- Reference values are made from reconstructed jets which are matched with MC information
- Mtop = 171.5GeV
- sigma Mtop = 16.8 GeV
- MW = 80. 5GeV
- sigma MW = 9.9 GeV
- angle(jj) = 2.448
- sigma angle(jj) = 0.277

Isolated Lepton

Previous Definition

current lepton ID

• muon selection

electron selection

• tau (leptonic decay)

• tau (hadronic decay)

$$\cos\theta_{\rm cone} = 0.98$$

E_{cone} < $\sqrt{6(Epfo - 15)}$

muon selection

- E_{PFO} with track > 9 GeV
- Deposited energy in yoku >1.2 GeV
- $E_{HCAL}/E_{EMCAL} > 0.5$
- E_{CAL}/E_{PFO} < 0.5

$$E_{cone} < \sqrt{6(E_{PFO} - 15)} \text{ (cos}\theta_{cone} = 0.98\text{)}$$

• r0 < 0.02 mm

.

Isolated Lepton

Previous Definition

current lepton ID

• muon selection

electron selection

• tau (leptonic decay)

• tau (hadronic decay)

 $\cos\theta_{\rm cone} = 0.98$ $E_{cone} < \sqrt{6(Epfo - 15)}$ electron selection \checkmark E_{PFO} with track > 2 GeV ✓ Deposited energy in yoku < 0.2</p> \checkmark E_{HCAI}/E_{FMCAI} < 0.1 • $E_{cone} < \sqrt{6(E_{PFO} - 15)} (\cos \theta_{cone} = 0.98)$ r0 < 0.05 mm or • r0 < 0.05 mm E_{EMCAL} > 15 GeV • $E_{HCAL}/E_{EMCAL} < 0.03$ • $\frac{E_{\text{cone}}(\cos\theta_{\text{cone}}=0.99)}{E_{\text{cone}}(\cos\theta_{\text{cone}}=0.98)} > 0.99$ • $E_{cone}(0.93 < \cos\theta_{cone} < 0.98) < 2 \text{ GeV}$

Isolated Lepton

Previous Definition

current lepton ID

• muon selection

electron selection

- tau (leptonic decay)
 - tau (hadronic decay)

$$\cos\theta_{\rm cone} = 0.98$$

E_{cone} < $\sqrt{6(Epfo - 15)}$

 same as muon selection except r0 requirement → r0 > 0.02 mm

tau (electron)

- $E_{cone} < \sqrt{6(E_{PFO} 15)} (\cos \theta_{cone} = 0.98)$
- r0 >= 0.05 mm

Isolated Lepton

Previous Definition

current lepton ID

muon selection

electron selection

- tau (leptonic decay)
- tau (hadronic decay)

$$\cos\theta_{\rm cone} = 0.98$$

E_{cone} < $\sqrt{6(Epfo - 15)}$

hadronic tau selection

- E_{PFO} with track >= 5 GeV
- $\frac{E_{cone}(\cos\theta_{cone} = 0.99)}{E_{cone}(\cos\theta_{cone} = 0.98)} > 0.8$
- $M_{cone}(cos\theta_{cone} = 0.99) < 2 \text{ GeV}$
- $M_{cone}(cos\theta_{cone} = 0.93) < 2 \text{ GeV}$
- no energetic(> 2 GeV) track in $0.93 < \cos\theta_{cone} < 0.99$
- 1 or 3 tracks in $\cos\theta_{cone} > 0.99$

33

in hadronic tau category, purity of tau is ~80%.

There are ~10% contamination from electron and another ~10% comes from light flavor.

1.1 tth \rightarrow In+6jets number of signals after event selection

 \sqrt{s} = 500 GeV, Mh = 125 GeV, (Pe⁻, Pe⁺)=(-0.8, +0.3)

	(Pe ⁻ ,Pe ⁺)=(-0.8,+0.3)
no cut	61.3
only Iso Lep cut	41.89
e	16.2
mu	17.6
tau	7.2
after event selection	10.6
e	4.3
mu	4.7
tau	1.3