Higgs recoil mass study

ILC Physics Meeting 2/27/2015

Jacqueline Yan (Univ. of Tokyo)

LCWS2013

This week : Improvement of ZH recoil studies

- Remove acoplanarity cut
- implement likelihood cut at end of final selection

ILC sample used i	in analysis					
chanel	anel mh ECM		L	Spin polarization	Detector simulation	
e+e → Zh->µµh	125 GeV	350 GeV	333 fb-1	P(e-,e+) = (-0.8,+0.3) (+0.8,-0.3)	Full ILD (ILD_01_v05 DBD ver.)	
e ⁺ Z H H H H H H H H H H H H H			BG : all 2f, 4f, 6f processes major BG after event selection: 2f_Z_I ($\mu \mu$), 4f_WWsI , 4f_ZZ_sI ($\mu \mu$ ff, $\mu \mu \nu \nu$)			
${ m e}^{-}$ Z $M_X^2 = \left(p_{CM} \right)^2$ Higgs recoil against	$Z ~ \mu^{-}$ $-(p_{\mu^+} + p_{\mu^+})$ di-lepton (μ	$(\mu_{\mu^-}))^2$ μ) system	$>\sim$	μ μ	Z µ µ f Z f	

Muon Selection

event selection

- reject neutrals
- P_total > 5 GeV
- E_cluster / P_total < 0.5
- cos(track angle) < 0.98 & $|D0/\delta D0| < 5$

Best muon pair candidate Selection

- opposite charge
- invariant mass closest to Z mass

Final Selection

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- acoplanarity < 3
- |cos(θ_Zpro)| < 0.91
 120 GeV < Mrecoil < 140 GeV

Cut values optimized in terms of signal efficiency and $\Delta \, \sigma \, / \, \sigma$

- Signal: GPET
- BG: 3rd order polynomial

definition

- M_inv : invariant mass of 2 muons
- pT_mumu : pT of reconstructed muons
- pTy_max : pT of most energetic photon
- θ_Zpro = Z production angle

Newest Final result:

• Eff_sig= 46.1+/- 0.5%

ECM =350 GeV

This week's investigations:

- Is acoplanarity cut necessary?
- Is pt_bal cut necessary? photon maybe from Higgs decay products e.g. → cause mode dependent bias ?
- redundant ??

Hadronization $\rightarrow \pi \rightarrow \gamma \gamma$

What I discovered

Pt_bal cut is apparently a good idea !!

Significant effect on BG reduction esp. $2f_Z$ leptonic ($\mu \mu$) almost no reduction in signal

Acoplanarity cut should be removed

no longer effective after other selection steps It simply lowers signal efficiency a waste !!!

Details coming up !!!

Later, we will observe these results in terms of

- number of signal and BG events
- cross section measurement precision

But first,

to tell some good news

Likelihood cut was successfully implemented

- Effective for reducing BG
- improved xsec precision
- (maybe also reduce M_recoil fit bias ??)

from here on, acop cut is removed and pt_bal cut is included

Likelihood function: $L = P(M_{inv}) * P(Pt) * P(CosZ)$

optimized likelihood cut 15 - 16

Finally decided on ln(L) > -15.5

formed using templates for signal events

Acop > 3 |dpt_bal| > 10 <u>GeV</u>

Comparing Pt_bal distributions:

Large amount of 2f_Z_leptonic BG removed, no signal loss

Acop < 3Comparing acoplanarity distributions: dpt_bal > 10 GeV hist_acos_BG hist_acos_BG signal hist_acos_BG hist_acos_sig 70 70 9312 Entries Entries 6709 1.967 Mean BG 1.369 RMS 0.6479 60 Mean 60 0.7692 RMS 4 primary cuts 50 50 without ptbal dut, 40 40 4 primary cuts Without acop dut 30 without ptbal cut, 30 20 with acop cut 20 10 10 2 3 2 3 No outstanding difference : only cut off this little region of BG (Acop > 3)

recoil mass fitting method

Fit range: 100-160 GeV

1st step:

- Fit only signal with GPET float all 5 pars
- Fit only BG: 3rd order polynomial

2nd step :

fit Sig + BG : only float height and mean fix others from step 1

 $\frac{N}{\sqrt{\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-x_{mean}}{\sigma}\right)^2\right\} \qquad \left(\frac{x-x_{mean}}{\sigma} \le k\right)$

$$\frac{N}{\sqrt{\pi\sigma}} \left[b \cdot \exp\left\{ -\frac{1}{2} \left(\frac{x - x_{mean}}{\sigma} \right)^2 \right\} + (1 - b) \exp\left\{ -k \left(\frac{x - x_{mean}}{\sigma} \right) \right\} \exp\left(k^2 / 2 \right) \right] \qquad \left(\frac{x - x_{mean}}{\sigma} \ge k \right) \quad \text{Gaus + expo (right side)}$$

Gaus (left-side),

Toy MC study

Toy MC 10000 seeds

goal: test quality of fitting method

```
in terms of M<sub>h</sub>, xsec etc.....
```

<u>method</u>:

generate MC events according to fittied "real" data

(Poisson)

fit MC hist with same GPET function \rightarrow get Nsig, xsec

w/o likelihood cut

With Likelihood cut

Fit range: 100-160 GeV

Slight reduction in bias of recoil mass fitting (?)

Result of Toy MC

Xsec error the best so far due to likelihood cut
8 % improvement
(about 2 sigma)

condition: (ln(L) > -15.5)

Comparison of results

	(both eLpR and eRpL)					(only eLpR)		
cuts	Nsig	Nbg	S/B ratio	sig eff	$\Delta \sigma / \sigma$ MC)	2f_Z_I	4f_WW_sl	4f_ZZ_sl
Primary cuts	1102	3691	0.30	48.2+/-0.05%		1.05E3 (0.050%)	504 (0.019%)	1.13E3 (0.62%)
Primary +acop	1049	3608	0.29	45.8+/-0.5%		1.02E3 (0.048%)	504 (0.019%)	1.11E3 (0.61%)
Primary +ptbal	1101	2872	0.38	48.1+/-0.5%	4.58+/-0.17%	280 (0.013%)	504 (0.019%)	1.13E3 (0.62%)
Primary + ptbal+acop	1048	2818	0.37	45.8+/-0.5%	4.73+/-0.19%	271 (0.013%)	504 (0.019%)	1.10E3 (0.60%)
after likelihood out								
Primary + ptbal + In(L)>-16	1079	2405	0.45	47.2+/-0.5%	4.56+/-0.17%	243 (0.011%)	315 (0.011%)	1.01E3 (0.55%)
Primary + ptbal + In(L)>-15.5	1056	2189	0.48	46.1+/-0.5%	4.39+/-0.16%	225 (0.011%)	241 (0.009%)	950 (0.52%)

Xsec (from reconstructed data) : 6.9+/-0.2 fb

Location of data for each process after each selection step /home/ilc/jackie/jackieZHProcessornew/data/CutOp/

- Evt_350_L155.dat : # of events
- EvtRate_350_L155.dat : # displayed in % w.r.t. raw #

Conclusion

- (1) Pt_bal cut is tested to be effective
- Significant effect on BG reduction esp. 2f_Z_leptonic ($\mu \mu$)
- almost no reduction in signal
- (2) Acoplanarity is removed
 - \rightarrow signal efficiency improved
- (3) Implemented likelihood cut
- Effective for reducing BG, improve xsec precision, (maybe also reduce M_recoil fit bias ??)
- xsec error (4.39%) and S/B ratio (48%) the best so far

Next step:

Further check of Pt_bal cut

- Require γ and $\mu \mu$ is back to back
- require lower energy boundary on γ

Optimize likelihood cut

• Use pt_bal cut also ? is pt cut necessary ? What is best cut threshold ??

w/o acop cut

With acop cut

Fit range: 100-160 GeV

selection of parameters for use in Likelihood cut

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- coplanarity < 3
- |cos(θ_Zpro)| < 0.91

120 GeV < Mrecoil < 140 GeV

Parameters showing correlation: not good for likelihood cut (?)

Parameters showing correlation: not good for likelihood cut (?)

Parameters with no apparent correlation: good for likelihood cut (?)

hist_L_jackieZH_2f_Z_leptonic_eL_pR

hist_L1BG_jackieZH_2f_Z_leptonic_eL_pR

断面積測定の精度の評価: 異なるECMとビーム偏極の比較 NEW

ECM	Pol	ε	Δσ/σ	xsec [fb]	Nsig	significance
350 GeV	(-0.8,+0.3)	47.7+/-0.5%	4.9+/-0.2%	6.71+/-0.34	1092+/-55	17.7
	(+0.8,-0.3)	47.8+/-0.5%	5.0+/-0.2%	4.53+/-0.26	720+/-41	17.8
250 GeV	(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	21.7
	(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	22.7

注) この表の fitting範囲は115-150 GeV (AWLC14 @ Fermilabより) 現在350 GeV のみ範囲を広げて、 Δ σ / σ が 4.7 +/- 0.2 % へ改善した

<u>比較#1:</u>	ECM =350 GeV ←→	ECM = 250 GeV :	
ECM= 25	50 GeVの方がΔ σ / σ	とMh 精度 が良い	μの運動量測定の分解能は低いPTほど良い

<u>比較#2:</u> Pol: (-0.8,+0.3) ←→ (+0.8, -0.3):

- 異なる偏極の間で $\Delta \sigma / \sigma$ に大きな差がなさそう
- (+0.8, -0.3): 統計が少ないが、S/B がずっと高い: WW BGが顕著に抑制

注意) 先行studyとの色んな違い:

- assumed L (350, 250 GeV) = (333, 250 fb-1) vs RDR: (300 fb-1, 188 fb-1)
- このstudy : ALL 2f, 4f, 6f BGs (whizard generator) vs only WW, ZZ (pythia generator ?)

results for sqrt(s) =250 GeV , L = 250 fb-1

evaluated using Toy MC generated from fitted function shapes

250 GeV	ε	Δ σ/σ	xsec	Nsig	S/N	significance
(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	0.37	21.7
(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	0.81	22.7

Signal sample:

Pe2e2h_.eL.pR & Pe2e2h_eR.pL

relevant BG process for Zmumu

- 4f_ZZ_leptonic
- 4f_ZZ_semileptonic
- 2f_Z_leptonic
- 4f_WW_leptonic
- 4f_WW_semileptonic
- 4fSingleZee_leptonic
- 4fSingleZnunu_leptonic
- 4f_ZZWWMix_leptonic
- 6f backgrounds (sqrt(s)=350 GeV)