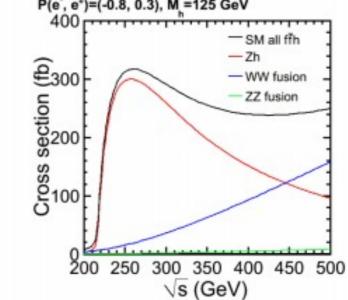
Hadronic recoil mass study using ZH -> qqH (ILC @ 250 GeV)


Tatsuhiko Tomita Kyushu University Taikan Suehara (Kyushu Univ.)

九州大学

Motivation

- One of the most important measurements at 250 GeV ILC is measurement of coupling constant with Higgs boson.
- In ILC, g_{ZZH}^2 can be measured by σ_{ZH} directly.
- Using this g_{ZZH}^2 , we can calculate some other couplings.
- So, it is important to measure σ_{tot} of ZH production with high precision !
- 250 GeV is one of the most suitable energy to measure σ_{tot} of ZH production.

ZH production

- Major Higgs production process at 250 GeV.
- Z boson will decay to ...
 - charged leptons (e, μ , τ) total ~10 %
 - neutrinos
 - hadrons

- total ~20 % e+
- total ~70 %
- Leptonic decay channel is useful for mass measurement.
 → High precision of mass measurement ~30 MeV.

 σ_{tot} measurement is also good (δ σ/σ ~2.6 %).

 But, statistics is limited. (only ~3.4% each lepton generation.)
- Hadronic decay channel has large statistics.
 - $\rightarrow \sigma_{tot}$ measurement is promising in hadronic channel. The problems are model dependency and large background.

Η

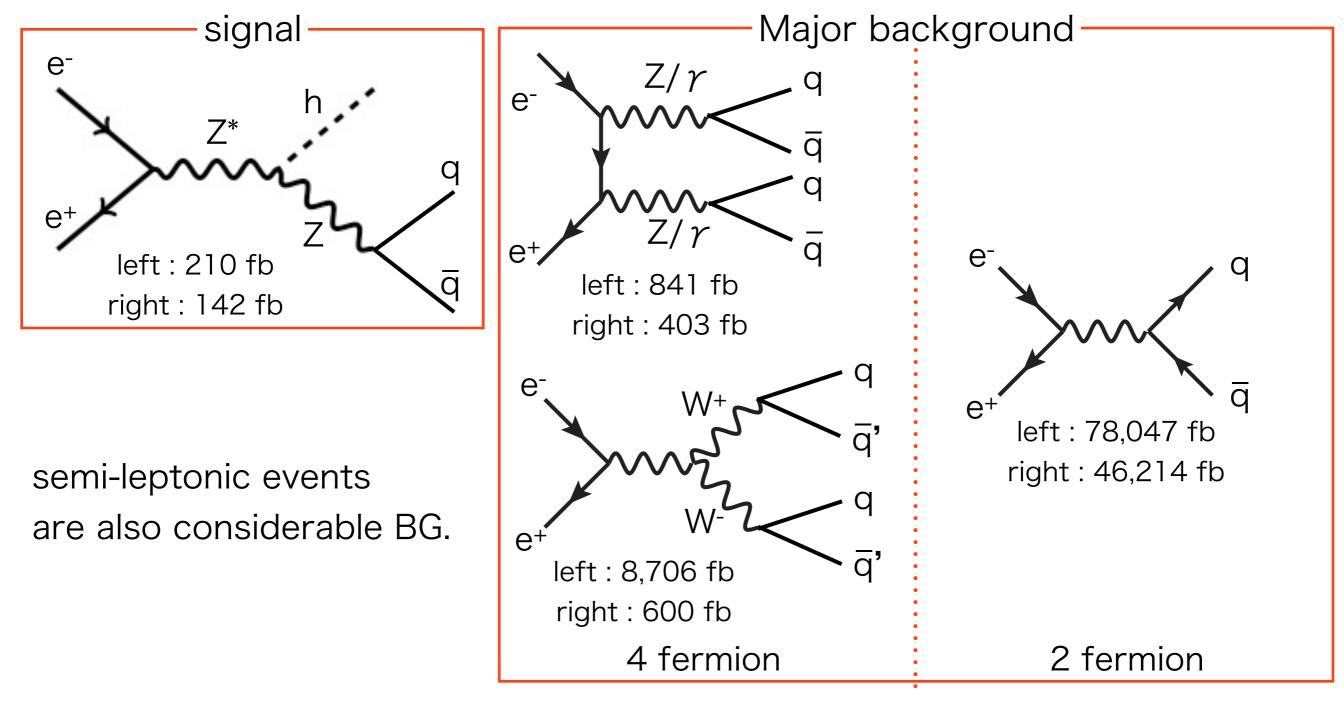
Recoil method in hadronic channel

e

e⁺

Using 4-momentum conservation,

$$m_{\rm recoil}^2 = (\sqrt{s} - E_Z)^2 - |\vec{p}_Z|^2$$


(recoil method)

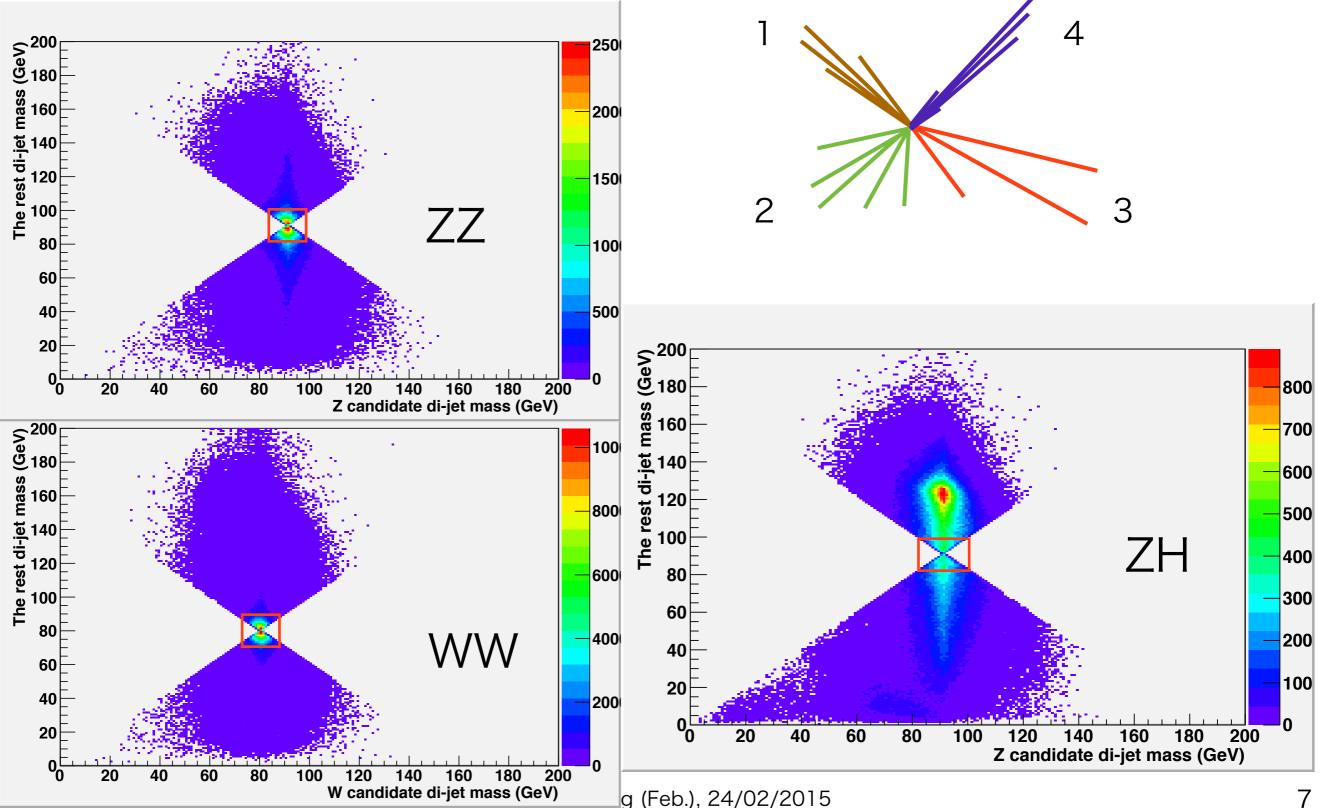
- Lepton channel has good S/N.
- Hadron channel has worse S/N, but large statistics.
 → Uncertainty of jet energy, clustering, etc ...
- Is it possible to use hadronic channel of ZH production ?

Q

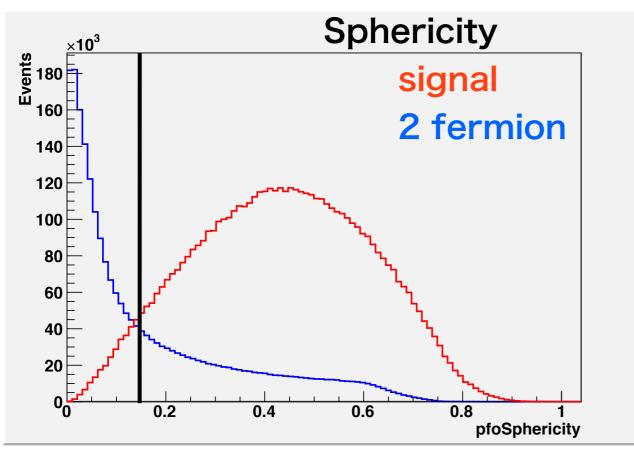
Data samples

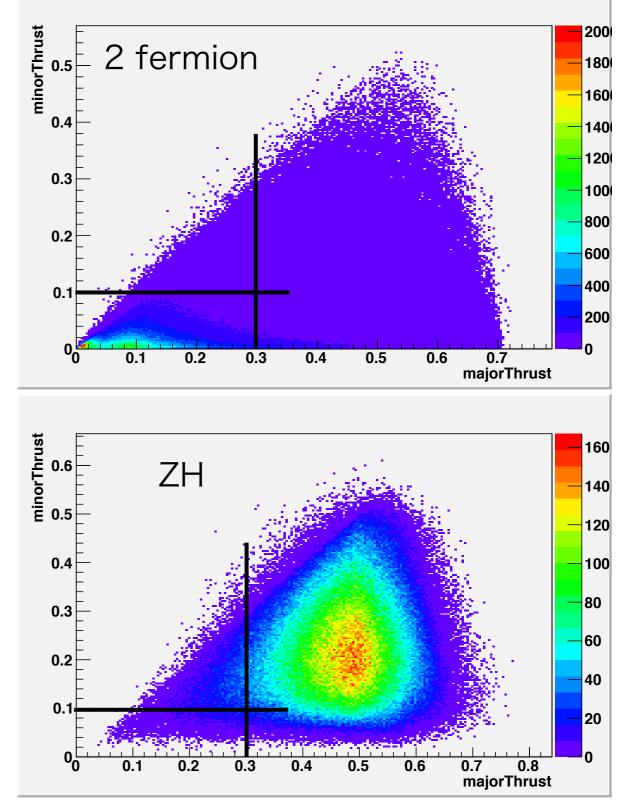
Higgs mass	Есм	Luminosity	Polarization	Detector
125 GeV	250 GeV	250 fb ⁻¹	left: (-0.8, +0.3) right:(+0.8, -0.3)	ILD_DBD ver.

Monthly meeting (Feb.), 24/02/2015

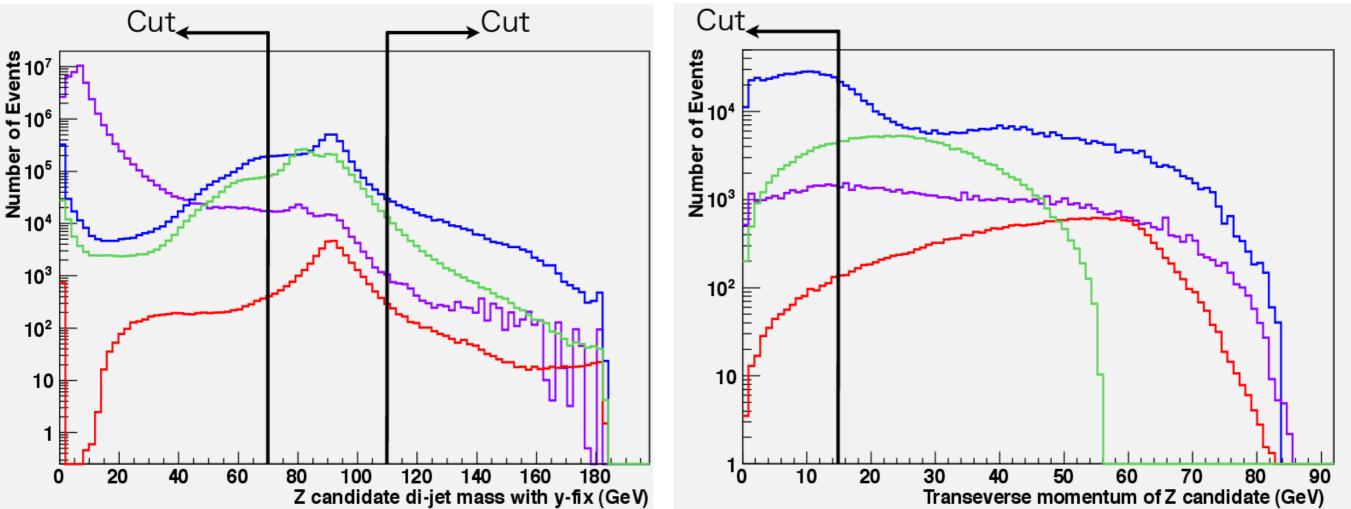

Analysis flow

- To improve jet clustering,
 - Initial state radiation
 - Isolated lepton
 - Hadronic tau jet were removed from events.
- Durham jet clustering was applied to the remaining particles.

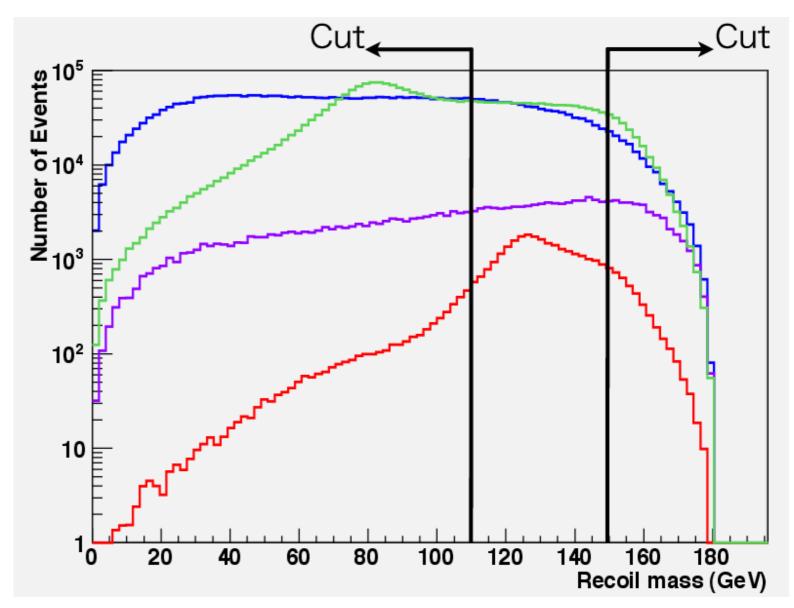

$$y = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$


• Forced 4 jet clustering, y threshold clustering were used. (y = 0.0025)

For 4 fermion backgrounds : forced 4 jet clustering •


• For 2 fermion background : Sphericity, Thrust (major, minor)

- by y threshold clustering.
- Reconstructed Z mass and Z p_T were used.



• Recoil mass distribution cut.

 Recoil mass was calculated by using 4 momentum of Z_{Rec} with y threshold clustering.

Cuts table

cuts	signal	4 fermion	2 fermion	others
left	50,816	9,361,676	19,315,415	216,171,025
right	34,308	1,084,045	12,556,240	222,597,419
4 fermion cut	82.8%	61.8%	97.9%	99.9%
2 fermion cut	78.5%	39.5%	33.6%	25.8%
Z mass Z p _T Recoil	46.2%	8.3%	1.4%	0.3%

Statistical precision after cuts

• After applying cuts, significance and stat. precision were calculated.

polarization	significance	stat. precision
left (-0.8, +0.3)	20.9 σ	4.8%
right (+0.8, -0.3)	28.0 σ	3.6%

- Stat. precision is about 1% worse than lepton channel (2.6%).
- Right handed polarization is better than left handed one. \rightarrow W background can be suppressed with right polarization.

Cut efficiency for each Higgs decay branch

 In order not to depend on decay mode of Higgs boson, the events should be survived equally after cuts.

mode	After cuts (%)	diff./mean
H->all	46.2%	
H->bb (57.7%)	43.3%	-6.3%
H->WW(leptonic) (2.3%)	45.3%	-2.0%
H->WW(semi-leptonic) (9.5%)	46.9%	+1.4%
H->WW(hadronic) (9.8%)	54.4%	+17.7%
H->gg (8.6%)	55.2%	+19.5%
H-> $\tau \tau$ (6.3%)	45.3%	-2.1%
H->ZZ (2.6%)	48.6%	+5.1%
H->cc (2.9%)	47.1%	+1.8%
H->γγ (0.2%)	43.8%	-5.2%

• WW(hadronic), gg have quite large inconsistency from mean... Monthly meeting (Feb.), 24/02/2015

Strategy to reduce inconsistency (Categorization)

- Categorization is a powerful tool to reduce difference of efficiency among Higgs decay modes.
 - Categorize events using number of jets, leptons, taus, etc.
 - Minimize the difference of efficiency in each category (decay modes with too small fraction in the category is negligible.)
 - Calculate partial cross section from each category
 - Combine all cross section from categories to get the total cross section of ZH production.

Categorization - 1

To resolve efficiency inconsistent issue, we will categorize events using - the number of tau jets $(0, 1, and \ge 2)$

- the number of isolated lepton (0, 1, and ≥ 2)

$$\begin{split} \mathrm{N}^{i} &= \sum_{n} \sigma_{\mathrm{tot}} \cdot \mathrm{BR}_{n} \cdot \theta_{n}^{i} \cdot \epsilon_{n}^{i} \\ \mathrm{n} = (\mathrm{b}, \mathrm{W}, \mathrm{g}, \tau, ...) \\ \mathrm{N}^{i} \text{ is a number of events in category } i, \sigma_{\mathrm{tot}} \text{ is total cross section,} \\ \mathrm{BR}_{n} \text{ is Higgs decay branching ratio, } \theta_{n}^{i} \text{ is fraction in category } i, \\ \epsilon_{n}^{i} \text{ is cut efficiency for category } i. \\ \text{If the cut efficiency of each decay mode can be assumed to be the} \\ \text{same as } \epsilon^{i} (=\epsilon_{n}^{i}). \qquad \frac{\mathrm{N}^{i}}{\epsilon^{i}} = \sigma_{\mathrm{tot}} \sum \mathrm{BR}_{n} \cdot \theta_{n}^{i} \end{split}$$

Then we can get

 ϵ_n^i

$$\sum_{i} \frac{\mathbf{N}^{i}}{\epsilon^{i}} = \sigma_{\text{tot}} \sum_{n} \sum_{i} \mathbf{BR}_{n} \cdot \theta_{n}^{i} = \sigma_{\text{tot}}$$

n

Monthly meeting (Feb.), 24/02/2015

Categorization - 2

If the cut efficiency is not exactly the same,

we should consider the systematic effect caused by the difference.

$$\delta \epsilon_n^i = \epsilon_n^i - \epsilon^i$$

And the cross section is

$$\sigma_{\text{tot}} = \frac{\sum_{i} \frac{N^{i}}{\epsilon^{i}}}{1 + \sum_{n} \sum_{i} BR_{n} \cdot \theta_{n}^{i} \cdot \frac{\delta \epsilon_{n}^{i}}{\epsilon^{i}}}$$

We want to keep systematic uncertainty is less than 1 % to do model independent analysis.

If we don't assume any models, we should keep $\theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$. If we can assume SM like Higgs, we should keep $BR_n \cdot \theta_n^i \cdot \frac{\delta \epsilon_n^i}{\epsilon^i} \ll 1 \%$.

Cut efficiency after categorization

mode	After cuts (%)	Before optimization	After optimization (square sum)
H->all	46.2%		
H->bb (57.7%)	43.3%	-6.3%	±0.6%
H->WW(leptonic) (2.3%)	45.3%	-2.0%	±1.6%
H->WW(semi lep) (9.5%)	46.9%	+1.4%	±3.0%
H->WW(hadronic) (9.8%)	54.4%	+17.7%	±1.5%
H->gg (8.6%)	55.2%	+19.5%	±5.5%
H-> $\tau \tau$ (6.3%)	45.3%	-2.1%	±1.9%
H->ZZ (2.6%)	48.6%	+5.1%	±1.5%
H->cc (2.9%)	47.1%	+1.8%	±4.0%
H->γγ (0.2%)	43.8%	-5.2%	±4.2%

• After optimization, diff./mean is at most 5.5 %.

• Need check the impact of this inconsistency.

Statistical precision after categorization

polarization	significance	stat. precision
left (-0.8, +0.3)	40.3 σ	2.5%
right (+0.8, -0.3)	44.6 σ	2.2%

- After reducing cut difference from mean value, the stat. precision recalculated with categories.
- In this case, 2.2 % stat. precision with right polarization.

Systematic uncertainty

- The uncertainty of the Higgs branching ratio was studied.
- Changed each Higgs branching ratio 3 times of the measurement accuracy in ILC 250 GeV.

(ex. White Paper : H->bb 1.2 % <=> This study : H->bb 3.6 %)

 $N_{\rm orre}$

	σ_{tot}	$=\frac{1}{\mathcal{L}}$		(ke	ep total N _{eve})
$b\bar{b} + 3.6\%$	210.23 fb	141.57 fb	~0.0%	-0.0%	
$b\bar{b} - 3.6\%$	210.10 fb	141.61 fb	~0.0%	+0.0%	
$c\bar{c} + 24.9\%$	210.11 fb	141.55 fb	$\sim 0.0\%$	$\sim 0.0\%$	
$c\bar{c} - 24.9\%$	210.22 fb	141.63 fb	$\sim 0.0\%$	~0.0%	
gg +21.0%	210.07 fb	141.59 fb	$\sim 0.0\%$	$\sim 0.0\%$	
gg -21.0%	210.26 fb	141.59 fb	$\sim 0.0\%$	$\sim 0.0\%$	
WW +19.2%	210.07 fb	141.63 fb	$\sim 0.0\%$	$\sim 0.0\%$	
WW -19.2%	210.26 fb	141.55 fb	$\sim 0.0\%$	$\sim 0.0\%$	
$\tau \tau$ +12.6%	210.28 fb	141.66 fb	+0.1%	+0.1%	
au au -12.6%	210.05 fb	141.51 fb	-0.1%	-0.1%	
ZZ + 57.0%	210.33 fb	141.71 fb	+0.1%	+0.1%	
ZZ - 57.0%	210.00 fb	141.47 fb	-0.1%	-0.1%	
$\gamma\gamma$ +100.5%	210.52 fb	141.86 fb	+0.2%	+0.2%	
$\gamma\gamma$ +100.5%	209.83 fb	141.32 fb	-0.2%	-0.2%	

The effect of Higgs branching ratio is at most \pm 0.2 %.

Monthly meeting (Feb.), 24/02/2015

Statistical precision using MVA

Using TMVA (BDT and Likelihood), the stat. precision is...
 (Input variables : Z mass, Z p_T, Recoil mass, and Sphericity)

polarization	significance	stat. precision
left (-0.8, +0.3)	54.9 σ	1.8%
right (+0.8, -0.3)	60.8 σ	1.6%

- Achieved less than 2 % by using TMVA.
 - \rightarrow systematic uncertainty and model dependency should be considered.
- Input variables are not optimized, just some of variables which were used cut method.

Summary

- Using hadronic channel of e⁻e⁺ -> ZH, we can measure the total cross section of ZH with 2.2 % accuracy in right handed polarization.
- Some bias of the cuts were observed, we need to reduce this inconsistency with more optimized categorization.
- Systematic uncertainty of Higgs branching ratio is about 0.2 %. It is much smaller than stat. precision.
- MVA can improve stat. precision up to 1.6 %.
 Systematic uncertainty and model dependency should be studied.

Future plans

- Consider other systematic uncertainties, such as jet clustering, flavor tagging, background estimation and so on.
- Optimize categorization (more divided, more model independent cut...)
- Consider systematic uncertainty and model dependency of MVA.

• Apply same method to 350 GeV case.

backup slides

Sphericity, Thrust

$$S^{ab} = \frac{\sum_{i} p_{i}^{a} p_{i}^{b}}{\sum_{i} p_{i}^{2}} \quad a, b = x, y, z$$

$$T_{major} = \max_{|\vec{n}'|=1, \vec{n}' \cdot \vec{n}=0} \frac{\sum_{i} |\vec{p_{i}} \cdot \vec{n'}|}{\sum_{i} |\vec{p_{i}}|}$$

$$T_{minor} = \frac{\sum_{i} |\vec{p_{i}} \cdot \vec{n''}|}{\sum_{i} |\vec{p_{i}}|} \quad \text{with } \vec{n''} \cdot \vec{n} = \vec{n''} \cdot \vec{n'} = 0$$

diff./mean of each category

category	0lep,0tau btag	0lep,0tau no btag	0lep,1tau	0lep,1tau	0lep,≧2tau	1lep,0tau	1lep,≧1tau	≧2lep, ≧0tau
H->all							——	——
H->bb	-0.6%	-0.1%	-0.2%	-0.03%	~0.0%	-0.05%	~0.0%	~0.0%
H->WW(I)	+0.5%	+0.9%	~0.0%	-0.3%	-0.2%	-0.9%	-0.8%	-0.05%
WW(sl)	-0.1%	-2.7%	-0.2%	-0.9%	-0.2%	+0.7%	-0.2%	+0.02%
WW(h)	+0.7%	+0.9%	+0.9%	+0.1%	+0.03%	-0.07%	~0.0%	~0.0%
H->gg	+4.1%	+3.7%	-0.2%	+0.08%	~0.0%	-0.05%	~0.0%	~0.0%
Η->ττ	-0.3%	-1.7%	-0.3%	+0.5%	-0.3%	+0.02%	-0.2%	-0.02%
H->ZZ	+1.2%	-0.2%	-0.6%	+0.3%	-0.1%	-0.3%	+0.4%	+0.4%
H->cc	-3.8%	+1.1%	-0.4%	-0.2%	~0.0%	-0.08%	~0.0%	~0.0%
Η->γγ	+0.2%	-4.0%	+1.0%	-0.1%	+0.1%	-0.4%	+0.2%	+0.6%

Fraction to each category

category	Olep,Otau btag	0lep,0tau no b	0lep,1tau E _{vis} >180	0lep,1tau E _{vis} ≦180	0lep, ≧2tau	1lep,0tau	llep, ≧ltau	≧2lep, ≧0tau
H->all 549,279	60.2%	21.6%	3.5%	4.6%	2.7%	5.5%	1.3%	0.75%
H->bb 57.7%	92.0%	4.8%	2.3%	0.5%	0.04%	0.33%	0.01%	~0.0%
H->WW(l) 2.3%	2.2%	6.1%	0.04%	11.4%	6.9%	24.1%	26.3%	23.0%
WW(sl) 9.5%	7.5%	22.2%	8.9%	10.9%	1.4%	45.4%	3.4%	0.2%
WW(h) 9.8%	25.4%	66.5%	6.8%	0.4%	0.3%	0.5%	0.07%	0.0%
H->gg 8.6%	26.9%	69.8%	2.7%	3.0%	0.06%	0.3%	0.01%	0.0%
H->ττ 6.3%	3.9%	8.4%	2.8%	42.9%	35.4%	2.4%	4.2%	0.1%
H->ZZ 2.6%	34.4%	43.8%	5.0%	3.4%	1.5%	3.2%	2.7%	6.0%
H->cc 2.9%	28.3%	68.0%	2.9%	0.5%	0.05%	0.3%	0.01%	0.0%
H->γγ 0.2%	25.3%	65.7%	3.1%	2.1%	0.5%	0.7%	0.5%	1.9%
	Hadr	ronic		with Tau		•	Leptonic	2

崩壊モード	崩壊分岐比のずれ
$H \rightarrow b\bar{b} (-0.8,+0.3)$	$\pm 1.7\%$
$H \rightarrow b\bar{b} \ (+0.8, -0.3)$	$\pm 1.6\%$
$H \rightarrow c\bar{c} (-0.8,+0.3)$	$\pm 4.0\%$
$\mathrm{H} \rightarrow c\bar{c} \; (+0.8, -0.3)$	$\pm 3.2\%$
$H \rightarrow gg (-0.8,+0.3)$	$\pm 3.7\%$
$H \rightarrow gg (+0.8, -0.3)$	$\pm 3.0\%$
$H \rightarrow WW (-0.8,+0.3)$	$\pm 3.7\%$
$H \rightarrow WW (+0.8, -0.3)$	$\pm 2.7\%$
$H \rightarrow \tau \tau ~(-0.8,+0.3)$	± 0.9%
$\mathrm{H}{\rightarrow}\tau\tau~(+0.8,-0.3)$	$\pm 0.8\%$
$H \rightarrow WW (-0.8,+0.3)$	$\pm 3.4\%$
$H \rightarrow WW (+0.8, -0.3)$	$\pm 3.1\%$
$H \rightarrow \gamma \gamma ~(-0.8,+0.3)$	$\pm 3.8\%$
$H \rightarrow \gamma \gamma ~(+0.8, -0.3)$	$\pm 3.1\%$

the deviation which one can observed 1 σ difference from SM like Higgs.