Higgs recoil mass study

ILC Physics Meeting 3/20/2015

Jacqueline Yan (Univ. of Tokyo)

LCWS2013

Last week

- improvement of xsec precision and BG rejection due to mainly.....
- new techniques in removing 2f_Z_leptonic BG while preventing signal loss
- implemented isolation cut for muon and gamma

This week

- Further improvement of xsec precision and BG rejection due to most importantly
- an isolated lepton finder processor introduced by Junping-san
- rejects almost ALL 4f_WW_semileptonic BG (used to be dominant residual BG)
- now we have $\Delta \sigma / \sigma = 4.01 + 0.00$ % with a much higher signal eff
- 89% (!) before Mrecoil cut (120-140 GeV) / 56% after Mrecoil and likelihood cut
- Last week's best: $\Delta \sigma / \sigma = 4.04 + / 0.00 \%$
- 83.5 % before Mrecoil cut (120-140 GeV) / 46% after Mrecoil and likelihood cut

- isolated lepton finder processor introduced by Junping-san
- Uses "MLP" : neural-net algorithm based on root package TMVA
- Apply cut on calculate the MVA output ($\leftarrow \rightarrow$ likeness) to distinguish signal isolated lepton from other particles
- recovery of photon from FSR / beamstrahlung

My current procedure for generating rootfiles with muon candidates

- 1. run isolated lepton finder processor
- 2. Run my original processor \rightarrow put relevant variables into "muon" tree
- 3. do final selection inside an analysis file

Now most dominant BG after all selection are

4f_ZZ_semileptonic : 990 4f_ZZWWMix_leptonic: 324 4f_Z_leptonic : 211

> vs Higgs: 1174

The number of events (correctly weighed) after each selection step is in / home/ ilc / jackie / jackieZHProcessornew / data / output_150320.dat Likelihood function: L = P(M_inv) * P(Pt) * P(CosZ) * P(Pt_bal)

Conclusion

Thanks to new lepton finder ,I can obtainsimilar BG rejectionand a slightly improved xsecprecisionwhile maintaininghigher signal efficiency

now $\Delta \sigma / \sigma = 4.01 + -0.00 \%$ sig_eff = 89% before Mrecoil cut

<u>Next steps :</u> How can I make xsec error go below 4% ????

apply similar method to other polarization scenarios and ECM= 250 GeV and compare

In time for ALCW15 (physics session)

• I will also start Zee analysis

Final Selection

- 84 GeV < M_inv < 98 GeV
- 10 GeV < pT_mumu < 140 GeV
- dptbal = |pT_mumu pTγ_max| > 10 GeV
- |cos(θ_Zpro)| < 0.91
- 120 GeV < Mrecoil < 140 GeV

definition

- M_inv : invariant mass of 2 muons
- pT_mumu : pT of reconstructed muons
- pTγ_max : pT of most energetic photon
- θ _Zpro = Z production angle
- Econe_mu: cone energy (cosθ>0.9) around muon
- Econe_ γ : cone energy (cos θ >0.9) around most energetic γ

•Pt_sum = $|Pt_d| - Pt_\gamma|$ (in vectors)

Final Selection NEW

- Econe_mu < 110 GeV
- 73 GeV < M_inv < 120 GeV widened
- 10 GeV < pT_mumu < 140 GeV
- Econe_γ > 10 GeV (*)
- Pt_sum > 40 GeV
- dptbal = pT_mumu pTγ_max > 60 GeV (*)
- |cos(θ_Zpro)| < 0.91
- 120 GeV < Mrecoil < 140 GeV

Added isolation

Combine two types of pt_balance cuts

> (*) used in coincidence with extra requirements to prevent signal loss

The improvement reported at last week's meeting

cuts		(both eLpR and Nsig	l eRpL) Nbg	S/B ratio	sig eff	Δσ/σMC)		(only eLpR) 2f_Z_I	4f_WW_sl	4f_ZZ_sl
2 weeks ago		1056	2189	0.48	46.1 (74%)	4.39+/-0.00% (RMS: 0.16%)	225 (0.011%)	241 (0.009%)	950 (0.52%)
1 week ago (best result)		1062	2010	0.53	46.4 (74%)	4.27+/-0.00% (RMS: 0.15%)	95 (0.004%)	306 (0.010%)	967 (0.53%)
current (best result)	In(L)>-20	1056	1740	0.61	46.2 (84%)	4.05+/-0.00% (RMS: 0.13%)	34 (0.002%)	116 (0.004%)	840 (0.46%)
	In(L)>-19.8	1041	1643	0.63	45.5 (84%)	4.04+/-0.00% (RMS: 0.13%)	31 (0.001%)	111 (0.004%)	802 (0.44%)

- Significant reduction in each major BG (25% reduction !!)
- improvement in xsec precision
- Signal efficiency before M_recoil cut is about 10% higher

What contributed ??

- More sophisticated methods to remove 2f_Z BG without losing much signal
- isolation cuts for muon and gamma
- usage of likelihood cut

I applied a condition to prevent signal bias I required energy sum of γ and di-muon to be > 0.8 * sqrt(s) signature of 2f_Z_leptonic BG

Effective for removing 4f_WW_sl BG

cut above 110 GeV

Cone energy around most energetic gamma (\sim 26 deg)

recoil mass fitting method

Fit range: 100-160 GeV

1st step:

- Fit only signal with GPET float all 5 pars
- Fit only BG: 3rd order polynomial

2nd step :

fit Sig + BG : only float height and mean fix others from step 1

 $\frac{N}{\sqrt{\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-x_{mean}}{\sigma}\right)^2\right\} \qquad \left(\frac{x-x_{mean}}{\sigma} \le k\right)$

$$\frac{N}{\sqrt{\pi\sigma}} \left[b \cdot \exp\left\{ -\frac{1}{2} \left(\frac{x - x_{mean}}{\sigma} \right)^2 \right\} + (1 - b) \exp\left\{ -k \left(\frac{x - x_{mean}}{\sigma} \right) \right\} \exp\left(k^2 / 2 \right) \right] \qquad \left(\frac{x - x_{mean}}{\sigma} \ge k \right) \quad \text{Gaus + expo (right side)}$$

Gaus (left-side),

Toy MC study

Toy MC 10000 seeds

goal: test quality of fitting method

in terms of M_h, xsec etc.....

<u>method</u>:

generate MC events according to fittied "real" data

(Poisson)

fit MC hist with same GPET function \rightarrow get Nsig, xsec

断面積測定の精度の評価: 異なるECMとビーム偏極の比較 NEW

ECM	Pol	ε	Δσ/σ	xsec [fb]	Nsig	significance
350 GeV	(-0.8,+0.3)	47.7+/-0.5%	4.9+/-0.2%	6.71+/-0.34	1092+/-55	17.7
	(+0.8,-0.3)	47.8+/-0.5%	5.0+/-0.2%	4.53+/-0.26	720+/-41	17.8
250 GeV	(-0.8,+0.3)	66.4+/-0.5%	3.6+/-0.1%	10.52+/-0.38	1747+/-64	21.7
	(+0.8,-0.3)	64.4+/-0.5%	3.3+/-0.1%	8.68+/-0.30	1398+/-48	22.7

注) この表の fitting範囲は115-150 GeV (AWLC14 @ Fermilabより) 現在350 GeV のみ範囲を広げて、 Δ σ / σ が 4.7 +/- 0.2 % へ改善した

<u>比較#1:</u>	ECM =350 GeV ←→	ECM = 250 GeV :	
ECM= 25	50 GeVの方がΔ σ / σ	とMh 精度 が良い	μの運動量測定の分解能は低いPTほど良い

<u>比較#2:</u> Pol: (-0.8,+0.3) ←→ (+0.8, -0.3):

- 異なる偏極の間で $\Delta \sigma / \sigma$ に大きな差がなさそう
- (+0.8, -0.3): 統計が少ないが、S/B がずっと高い: WW BGが顕著に抑制

注意) 先行studyとの色んな違い:

- assumed L (350, 250 GeV) = (333, 250 fb-1) vs RDR: (300 fb-1, 188 fb-1)
- このstudy : ALL 2f, 4f, 6f BGs (whizard generator) vs only WW, ZZ (pythia generator ?)

