

Status of two-track separation simulation with resistive Micromegas

ALCW Asian Linear Collider Workshop 2015 20-24 April '15 KEK Tsukuba, Japan

ilr

Outline

- Introduction and requirement for LCTPC at ILD
- Will **ask** these **3** questions:
 - -1) What is the optimal pad size and pad layout?
 - -2) How is electronics signal sampled, shaped and optimized? -3) How to study the LCTPC ability to reconstruct multiple tracks in both the r- Φ and r-Z planes?
- Description of simulation for future study of two-track separation with LCTPC

Time Projection Chamber (TPC) for ILD

TPC is the central tracker for International Linear Detector

- Large number of 3D points \rightarrow continuous tracking
- Good track separation and pattern recognition
- Low material budget inside the calorimeters (*c.f.* PFA)
 - Barrel: ~5% X₀
 - Endplates: ~25% X_0

TPC Requirements :

- Momentum resolution:
 - $\delta(1/p_{\rm T}) < 9 \times 10^{-5} \, {\rm GeV^{-1}}$
- Single hit resolution 3.5T: $\sigma(r\phi) < 100 \ \mu m \ (overall)$
 - $\sigma(z=0) \approx 400 \ \mu m$
- Tracking eff. for p_T>1 GeV: 97%
 dE/dx resolution ~5%

- Resolution is the precision to which the position of a passing particle can be measured
- □ <u>Requirements of the TPC (at 3.5T) are:</u>
 - **Transverse** (xy) resolution of 100 microns over 2m of drift, **60 microns** at Z=0
 - >Longitudinal (z) resolution of 1400 microns over 2m of drift, 400 microns at Z=0

Topology

IİL

Pattern recognition (Kalman fitter): go from outer to inner to resolved two track if track are forced to point at the IP

r-Φ plane

 In the r-Φ two-track separation is limited by the pad pitch and therefore by the pad geometrical & arrangement

• For best single hit resolution requires at least 3 pads per hits: charge sharing allows for much better **single-hit** resolution than $d/\sqrt{12}$

• Over all for pad of pitch *d*, significant information can be extracted from a pad row when **two tracks** are as near as about 1.5 *d* in that row

- Should look at pad pitch versus radius
- Larger occupancy and more curlers at smaller radius

 Connect track segments with high resolution Silicon Inner Tracker (SIT) and the Silicon External Tracker (SET)

r-Φ plane (track matching)

Same pad pitch versus radius

Simplify module design and construction

İİĹ

Pad pitch varies versus radius Allow better match with inner tracker

r-z plane

• In the r-z the resolution is driven by our ability to precisely measure the **drift time**

- For each pad we have charge (ADC) as a function of fixed time intervals (25 40 ns)
- Fit rise of pulse to get Z with better single hit resolution than the sampling time
- Sampling time the same for each module (cannot be better at smaller radius... can it?)
- Prone to use fast shaping time electronics (100 ns)
- GEM: all pads in a hit have identical signal shape
- MM with resistive layer: neighboring pads have delayed signals

Charge dispersion

- A high resistivity film bonded to a readout plane with an insulating spacer

- 2D continuous RC network defined by material properties and geometry.

- point charge at r = 0 & t = 0 disperses with time.

Micromegas + resistive anode

Pulse shape origin

Transverse diffusion	$1 \qquad r^2$	
Transverse diffusion	$T(x) = \frac{1}{\frac{\pi}{\sqrt{2\pi}}} \exp(\frac{-x}{2\pi^2})$	track
	$O_x \sqrt{2\pi}$ $2O_x$	11
Longitudinal diffusion		
Longitudinal diffusion	$1 - t^2$	••••••
	$L(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp(\frac{t}{2\sigma^2})$	• ••••• •
		mesh
Intrinsic rise time	$R(t) = \frac{t}{t}$ for $0 < t < T$	
Induction gap	T_{rise}	pads
induction Sup	$=1$ for $t > T_{t}$	
	= 0 for $t < 0$	
	-	$T(\mathbf{x})$
Preamplifier effect	$\begin{pmatrix} t \end{pmatrix} \begin{pmatrix} t \end{pmatrix} \begin{pmatrix} t \end{pmatrix}$	
Preamplifier Response	$H(t) = \exp\left[-\frac{t}{t}\right] \left[1 - \exp\left[\frac{t}{t}\right]\right] \text{ for } t > 0$	
	$\begin{pmatrix} \iota_f \end{pmatrix} \begin{pmatrix} \iota_r \end{pmatrix}$	
	= 0 for $t < 0$	
Resistive foil + glue	$(1)^{2}$ $(x^{2} + x^{2})$	
Resistive foil + glue	$\rho(x, y, t) = \left \frac{1}{\pi \sqrt{-t}} \right \exp \left(\frac{-(x + y)}{4th} \right)$	
	$(O_t \sqrt{\pi u n})$ $(4ln)$	
11	h = 1/RC	
11		Х

Pulse shape origin

Transverse diffusion Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$	track
Longitudinal diffusion Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$	mesh
Intrinsic rise time Induction gap	$R(t) = \frac{t}{T_{rise}} \text{ for } 0 < t < T_{rise}$ $= 1 \text{for } t > T_{rise}$ $= 0 \text{for } t < 0$	pads
Preamplifier effect Preamplifier Response	$H(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$ $= 0 \qquad \qquad \text{for } t < 0$	
Resistive foil + glue Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$ $h = 1/RC$	t

Pulse shape origin			
Transverse diffusion Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$	track	
Longitudinal diffusion Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$	iii iii iii mesh	
Intrinsic rise time Induction gap	$R(t) = \frac{t}{T_{rise}} \text{for} 0 < t < T_{rise}$ $= 1 \text{for} t > T_{rise}$ $= 0 \text{for} t < 0$	P(t)	
Preamplifier effect Preamplifier Response	$A(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$ $= 0 \qquad \qquad \text{for } t < 0$	1	
Resistive foil + glue Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$ $h = 1/RC$	0 T _{rise} t	

Transverse	diffusion

Transverse diffusion

$$\sigma(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$$

Longitudinal diffusion Longitudinal diffusion

$$(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$$

L

Intrinsic rise time Induction gap

$$R(t) = \frac{t}{T_{rise}} \text{ for } 0 < t < T_{rise}$$
$$= 1 \quad \text{for } t > T_{rise}$$
$$= 0 \quad \text{for } t < 0$$

Preamplifier effect Preamplifier Response

$$H(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$$
$$= 0 \qquad \qquad \text{for } t < 0$$

Resistive foil + glue
Resistive foil + glue
$$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)^2$$

14 $h = 1/RC$

H(t) 1 Your function 0 T_{rise} t

Pad Amplitude

2) Maximum of Parabola Quadratic Fit Method (QFM)

P(i)

Pulse height

Pulse height

Pulse height

A_i = max of parabola

Pad Amplitude

3) Integrate above threshold Re-integration method (RM)

 $A_i = Sum P(i)$

Pad Amplitude

Method use in 2011 (still to be implemented for the 2015 data)

Transverse Resolution MM

Resolution v. Drift Distance (All Scans)

2011 data Single module

- Source: Nicholi Shiell
- M.Sc. Thesis
- Carleton University

middle

PCB

riah[.]

Run 03047, Module 3, Row2

Run 03047, Module 3, Row2

ΪŪ

Run 03047, Module 3, Row2

Run 03047, Module 3, Row2

Z resolution

<u>II</u>L

2014 Z-Resolution Comparison, B=1T

27

Charge Dispersion Resistive Anode Simulation

Simulation – PRF (ok)

ilr iit

Raw Charge Shape versus Shaped Pulse

Figure: N. Shiell

Raw Charge Shape versus Shaped Pulse

$$H(t) = A_0 \left(\frac{t}{\tau}\right)^3 \sin(\frac{t}{b\tau}) \exp(-\frac{t}{\tau})$$

from Eric Delagnes etal at Saclay

Simulation pulses (ok)

Simulation pulses

Parameter	Initial value	Final value
Drift speed	76.98 um/ns	fixed
Transverse diffusion	95.4 um/root(cm)	fixed
Longitudinal diffusion	231.289 um/root(cm)	fixed
Resistivity	2.9 MOhm/sq	fixed
Glue thickness	75 um	fixed
Dielectric constant	4.5	2.66
Induction time	120 ns	166 ns
b (shaper)	3.7	3.42
$\tau \ (\text{shaper})$	$151 \mathrm{ns}$	$151 \mathrm{~ns}$
Pad angular width	0.001984 rad	fixed
Pad height	6.84 cm	fixed
Lower radius of bottom row	$1.522457785 { m m}$	fixed
X_0 track	event dependent	
ϕ track	event dependent	
Drift distance	$30 \mathrm{cm}$	$30 \mathrm{~cm}$

Simulation – hits along tracks (ok)

- For each pad we have *charge* (ADC) as a function of *time* (40 ns intervals)
- Define pad geometry (to do)
- Steps from ionization to tracks:
- 1) Generate ionization along tracks (ok)
- 2) Drift ions: longitudinal & transverse diffusion (ok)
- 3) Signal pulse: induction gap, resistive layer and electronics shaping (ok)
- 4) Determine *amplitude* and *arrival time* of each pad pulse (in dev: algorithm to deal with overlapping pulses)
- 5) Group *pulses* on each row into *hits*
- 6) Use hit positions to fit tracks
 - 7) Get two-track resolution / single-hit resolution

Pulse Amplitude/Time Determination

- Each readout pad produces an **electronic pulse** which encodes the charge
- Need to determine the **amplitude/time** of this pulse
- **New method:** *Reintegration* over fixed time interval and *Gaussian Inflection* (assume negligible error on time zero)

- Simulation of restive layer validated with data
- The basic framework for producing hits is in placed
- Still need to fine-tune pulse finding in mutli-track environment
- Define geometry: using GEAR file LCTPC
- Project for new M.Sc. Student at Carleton
- Benchmarked two-track separation power of the MM with resistive layer