

Report from the pixel-TPC test beam in March/April

Michael Lupberger

University of Bonn

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

LCTPC Collaboration Meeting KEK 20.04.2015

- Introduction:
 - Pixel-TPC working principle
 - 2013 test beam
- 2015 test beam impressions
 - Preparation
 - Installation
 - Some event display images

Introduction

- TPC endplate: measure x, y, z(drift time) of primary electron as precise as possible, need of charge amplification
- x, y precision: highly granular readout \rightarrow pixel ASCI
- z precision: fast sampling frequency \rightarrow ToA with fast clock
- Charge amplification: MPGDs \rightarrow integrated Micromegas
- Pixel-TPC: combine Timepix chip with Micromegas

Timepix chip

- Universal readout chip
- Properties:
 - active surface: 1.4 x 1.4 cm²
 - pixel size 55 x 55 µm²
 - 256 x 256 pixel array
 - 14 bit counter in each pixel (ToA or ToT), 100 MHz clock
 - Noise threshold ~500e⁻ (ENC ≈ 90e⁻)

Timepix+Micromegas=InGrid

- Aluminium mesh on chip
- Use photolithographic process
 - Hole to pixel alignment
 - Pillar height uniformity

Setup at DESY

Reconstructed tracks

Goal: ~100 InGrid module (cover 50% of area)

Achieved: 3 modules (1x96, 2x32 InGrids) ≈ 10.5 mio. channels

Goal: ~100 InGrid module (cover 50% of area)

Achieved: 3 modules (1x96, 2x32 InGrids) ≈ 10.5 mio. channels

Goal: ~100 InGrid module (cover 50% of area)

Achieved: 3 modules (1x96, 2x32 InGrids) \approx 10.5 mio. channels

- Water cooling inside aluminium support structure
- Stable powering of Timepix chips (LDOs, capacitors)
- Integration of Timepix chip in Scalable Readout System (SRS) (RD51, CERN): 5 FECs, maximum readout rate
- Study of field distortions: can be avoided by design
 → only partly applied, due to lack of time
- Dedicated InGrid production for test beam
- Light weight frame + brackets

Components

Components

InGrid Octoboards

Low voltage power board to supply Timepix chips

universität**bonn**

Assembly in clean room

Mounting at DESY

Numbers:

- > 8.5 mio. channels permanently in operation
- > 1.5 mio. events recorded in one week (≈ 1 TB of a data)
- Up to 5.5 Hz readout rate (theo. maximum for octoboard)
- T2K gas
- ≈ 150 runs with different parameters
 - B = 0 / 1 T
 - E_{Drift} = 130 / 230 V/cm
 - TPC geometry (z: 0 \rightarrow 460 mm, Θ :15 \rightarrow -40°, Φ :9 \rightarrow -90°)
 - Timepix ToA mode: 40 MHz, 80 MHz (=700µm@130V/cm)
 - Timepix ToT mode (gain measurement): $V_{Grid} 280 \rightarrow 350 V$
 - Long term run with cosmics

Events: Typical track

Events: Typical track (dead columns, noise)

Events: Typical track

Events: Double track event

Events: Delta electron on track

Events: Several tracks

Events: Curlers

Summary and Outlook

- Built pixel-TPC+readout+DAQ with
 10,5 mio channels from 160 InGrid chips on 3 LCTPC modules
- Successful test beam at DESY in March/April
- Event displays already show features a pixel-TPC can resolve
- Find out why some chips died
- Detailed analysis to come:
 - Prepare GEAR file
 - Get MarlinTPC ready for analysis
 - Study resolution, double track resolution, dE/dx, resolution for different track angles, delta identification,...

to everyone who participated in this project

and to you for listening!

Michael Lupberger LCTPC Collaboration Meeting 2015

universität**bonn**

March/April 2013: 2 LCTPC octoboard modules

- Different amplification structures: GEM / InGrid
- Test of readout system
- Readout rate: 2.5 Hz; 40MHz clock
- Electron beam of up to 6 GeV
- Gas: Ar:CF4:iC4H10 (95:3:2) = T2K gas
- ~ 2 Mio. frames recorded, including B = 1 T
- Extensive testbeam program
- Preliminary data analysis in MarlinTPC Robert Menzen

Preliminary Analysis: Cuts

Dataset for first analysis:

z-scan, B=0 T, E_{Drift} = 230 V/cm (D_T = 311 µm/ \sqrt{cm})

 \Rightarrow tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track

Preliminary Analysis: Cuts

Dataset for first analysis:

z-scan, B=0 T, E_{Drift} = 230 V/cm (D_T = 311 µm/ \sqrt{cm})

⇒ tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events

Preliminary Analysis: Cuts

- Dataset for first analysis:
- z-scan, B=0 T, E_{Drift} = 230 V/cm (D_T = 311 μ m/ \sqrt{cm})
- ⇒ tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events
- Tracks centred on lower chip row (z dependent)

Transverse spatial resolution

Fit function $f(x) = \sqrt{P0^2 + P1^2 \cdot z}$

P0: intrinsic x-y resolution 327 μ m dominated by field distortions P1 = 310 μ m/ \sqrt{cm} : diffusion in T2K for E = 230 V

Preliminary z-scan results

