Arguments and Requirements for an ILC "IPBPM"

Glen White, SLAC March 30, 2015

Q: Provide 1 or 2 BPMs inside of QD0's?

- Require IPFB BPM on outgoing beamline
- Another BPM on ingoing beamline after QD0?
- Provides IP position info by reconstructing IP trajectory
 - "Trivial" for SiD, ILD has tighter space constraints-> need to justify.

IPBPM Requirements Summary

- Recovery of IP collisions after push-pull or significant down-time
 - Recover collisions within beam-beam feedback capture range (10um)
 - Requires BPM resolution of similar scale to capture range requirement
 - BPM pair needs to be aligned with detector
 - Requires high quality gain tracking in electronics (cal tone)
- Tracking of IP position motion <1σ
 - Requires O(nm) resolution cavity BPM pair
 - Compatible with IPFB?
 - Dynamic range sufficient given IP angle jitter?
 - Gain sensitivity?
 - Beam-beam kick far more sensitive to relative IP offset, better to use that.
 - Need absolute tracking of IP position at this scale?
 - Probably only detector cares about this?
 - Provide information about FD jitter by comparison with u/s BPM systems
 - Again, beam-beam kick more sensitive for this purpose anyway
- Reconstruction of IP waist position?
 - Required resolution set by $\beta_{y}^{*} \approx 500$ um
 - Best possible reconstruction accuracy by IPBPM pair ~ 2mm

Beam-Beam Kick Feedback Capture Range $\Delta y \sim 10 \text{ um } \sigma_v \sim 10 \text{ um}$

IP Position Reconstruction

IP Waist Z Location Reconstruction?

 $(\beta_v^* = 0.48 \text{mm})$