Higgs self-coupling analysis with $\mathrm{H} \rightarrow \mathrm{WW}$ *
 Masakazu Kurata
 03/26/2015

STATUS

- Restart kinematic fitter
- Start to construct 1 TeV case - use to reject ttbar events
- Vector Boson Fusion process sensitivity should be improved
- Vertex charge study
- Ongoing \cdots no results can be shown yet
- Trying some ideas for vertex finding eff. \& vertex charge assignment eff. improvement
- So far, vertex charge assignment eff. improves up to 4%... - not significant improvement \cdots of course need more
- More precise study of each track on vertex is necessary
- I found my estimator was wrong! \rightarrow correct it and restart to check
- Need some time

Kinematic Fitter@ 1TeV

- Construct $\nu \nu \mathrm{HH} \rightarrow \nu \nu(\mathrm{bb})(\mathrm{WW}) \rightarrow \nu \nu(\mathrm{bb})(\mathrm{iiij})$
- Constraints: $m(H 1)=m(H 2)$
$m(j \mathrm{j})=\mathrm{m}(\mathrm{W})$ on-shell
$\vec{p}=\overrightarrow{0}$, include missing
$\sum E=1 \mathrm{TeV}$, include missing
- Jet energy resolution effect is included to kinematic fitter
- Same way as @500GeV
- Energy dependence of jet energy resolution is considered

Jet energy resolution

- Jet energy resolution has the dependence of jet energy itself
- So, parameterize energy dependence, which is save was as @ 500 GeV
o e.g.) bjet jet energy resolution
Fit: Gumbel dist.

$$
f(x)=\frac{1}{\beta} \exp \left(\frac{x-\alpha}{\beta}\right) \exp \left(-\exp \left(\frac{x-\alpha}{\beta}\right)\right)
$$

ILD Proliminary

PARAMETERIZATION

- 2 parameters: α and β
- Same way as @500GeV
- Parameterize jets from W boson too
- e.g.) bjet jet energy resolution parameterization

Kinematic fitter for all hadronic @1TEV

- Process of $\nu \nu \mathrm{HH} \rightarrow \nu \nu(\mathrm{bb})(W W) \rightarrow \nu \nu(\mathrm{bb})(\mathrm{iji})$
- Mass resolution become better??

Kinfit Reco

- Higgs mass resolutions become well
- Can this tail be recovered more?

- Where is this tail coming?

KINEMATIC FITTER FOR,ALL HADRONIC @1TEV

- Process of $\nu \nu \mathrm{HH} \rightarrow \nu \nu(\mathrm{bb})(\mathrm{WW}) \rightarrow \nu \nu(\mathrm{bb})(\mathrm{ijiij})$
- Comparison between signal and some backgrounds

Signal
ttbar: lep+jets
ttbar+g
ZZH

- Separation of W and Z can be seen
- ZZH rejection will be better
- How is non-resonant $\nu \nu$ backgrounds? \rightarrow checking on going
- Need more stat \cdots it is very preliminary!

NEXT

- Need more stat.
- Non-resonant $\nu \nu$ backgrounds
- Check $\chi 2$ distribution
- Check more kinematic variables
- E(miss) for wider range
- Missing mass
- etc.

